An Introduction to Hidden Markov Models

Max Heimel

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/
Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
 □ What is a Hidden Markov Model?

■ Algorithms, Algorithms, Algorithms
 □ What are the main problems for HMMs?
 □ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
 □ A short overview

■ Outlook
 □ Hidden Markov Models and Map Reduce
 □ Take-Home Messages
Motivation

- Pattern recognition: finding structure in sequences.
Goals of this talk

- Demonstrate, how sequences can be modeled
 - Using so-called Markov chains.

- Present the statistical tool of Hidden Markov Models
 - A tool to find underlying processes to a given sequence.

- Give an understanding of the main problems associated with Hidden Markov Models
 - And the corresponding applications.

- Present the Apache Mahout implementation of Hidden Markov Models

- Give an outlook on implementing Hidden Markov Models for Map/Reduce
Agenda

- Motivation

- An Introduction to Hidden Markov Models
 - What is a Hidden Markov Model?

- Applications for Hidden Markov Models
 - What are the main problems for HMMs?
 - What are the algorithms to solve them?

- Hidden Markov Models for Apache Mahout
 - A short overview

- Outlook
 - Hidden Markov Models and Map Reduce
 - Take-Home Messages
Markov Chains I

- Markov Chains model sequential processes.

- Consider a discrete random variable q with states $\{h_1, \ldots, h_n\}$.

- State of q changes randomly in discrete time steps.

- Transition probability depends only on the k previous states.

 □ Markov Property

Markov Chain

Probability depends only on the prior states

Random transition

$q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow \ldots$

Markov Chain

\(h_i \rightarrow h_j \rightarrow h_k \rightarrow \ldots \)
Markov Chains II

- **Most simplest Markov chain:**
 - Transition Probability depends only on the previous state (i.e. \(k=1 \)):
 \[
P(q_t = h_i | q_{t-1}, \ldots, q_1) = P(q_t = h_i | q_{t-1})
 \]
 - Transition Probability is time invariant:
 \[
P(q_t = h_i | q_{t-1}) = P(q_{t-1} = h_i | q_{t-2})
 \]

- **In this case, the Markov chain is defined by:**
 - An \((n \times n)\) Matrix \(T \) containing state change probabilities:
 \[
 T_{ij} = P(q_t = h_i | q_{t-1} = h_j)
 \]
 - An n-dimensional vector \(\pi \) containing initial state probabilities:
 \[
 \pi_i = P(q_1 = h_i)
 \]
 - Since \(\pi \) and \(K \) contain probabilities, they have to be normalized:
 \[
 \sum_{i=1}^{n} \pi_i = 1 \quad \forall a: \sum_{i=1}^{n} K_{ai} = 1
 \]
Markov Chains are used to model sequences of states.

Consider the weather:
- Each day can either be rainy or sunny.
- If a day is rainy, there is a 60% chance the next day will also be rainy.
- If a day is sunny, there is a 80% chance the next day will also be sunny.
- We can now model the weather as a Markov Chain:

\[
T = \begin{pmatrix}
 \text{rainy} & \text{sunny} \\
 \text{rainy} & 0.6 & 0.4 \\
 \text{sunny} & 0.2 & 0.8
\end{pmatrix}
\]

\[
\pi = \begin{pmatrix}
 \text{rainy} & 0.5 \\
 \text{sunny} & 0.5
\end{pmatrix}
\]

Examples for the use of Markov chains are:
- Google Page Rank
- Random Number Generation, Random Text Generation
- Queuing Theory
- Modeling DNA sequences
- Physical processes from Thermodynamics & statistical Mechanics
Now consider a „hidden“ Markov chain
- We can not directly observe the states of the hidden Markov chain.
- However: we can observe effects of the „hidden states“.

Hidden Markov Models (HMMs) are used to model such a situation:
- Consider a Markov chain and a random – not necessarily discrete - variable \(p \).
- The state of \(p \) is chosen randomly, based only on the current state of \(q \).
- The “simplest” HMM has a discrete observable variable \(p \)
 - The states of \(q \) are take from the set \(\{o_1, \ldots, o_m\} \)

- In this case, the HMM is defined by the following parameters:
 - The matrix \(T \) and vector \(\pi \) of the underlying Markov Chain.
 - An \((n \times m) \) matrix \(O \) containing output probabilities:
 \[
 O_{ij} = P(p_t = o_j | q_t = h_i)
 \]
 - Again, \(O \) needs to be normalized: \(\sum_{i=1}^{n} O_{ij} = 1 \)

- Consider a prisoner in solitary confinement:
 - The prisoner cannot directly observe the weather.
 - However: he can observe the condition of the boots of the prison guards.
Agenda

- Motivation

- An Introduction to Hidden Markov Models
 - What is a Hidden Markov Model?

- Applications for Hidden Markov Models
 - What are the main problems for HMMs?
 - What are the algorithms to solve them?

- Hidden Markov Models for Apache Mahout
 - A short overview

- Outlook
 - Hidden Markov Models and Map Reduce
 - Take-Home Messages
Problems for Hidden Markov Models

<table>
<thead>
<tr>
<th>Problem</th>
<th>Given</th>
<th>Wanted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>Model, Observed Sequence</td>
<td>Likelihood the model produced the observed sequence</td>
</tr>
<tr>
<td>Decoding</td>
<td>Model, Observed Sequence</td>
<td>Most likely hidden sequence</td>
</tr>
<tr>
<td>Learning (unsupervised)</td>
<td>Observed Sequence</td>
<td>Most likely model that produced the observed sequence</td>
</tr>
<tr>
<td>Learning (supervised)</td>
<td>Observed- & Hidden sequence</td>
<td>Most likely model that produced the observed & hidden sequence</td>
</tr>
</tbody>
</table>

- **Model**:

 \[
 T = \begin{pmatrix}
 T_{11} & \ldots & T_{1n} \\
 \vdots & \ddots & \vdots \\
 T_{n1} & \ldots & T_{nn}
 \end{pmatrix}, \quad \pi = \begin{pmatrix}
 \pi_1 \\
 \vdots \\
 \pi_n
 \end{pmatrix},
 \]

- **Observed sequence**

- **Hidden sequence**
Compute the likelihood that a given model M produced a given observation sequence O.

$$P(p_1 = O_1, \ldots, p_T = O_T | M)$$

The likelihood can be efficiently calculated using dynamic programming:

- **Forward algorithm:**
 - Reproduce the observation through the HMM, computing:
 $$\alpha_i(t) = P(p_1 = O_1, \ldots, p_t = O_t, q_t = h_i | M)$$

- **Backward algorithm:**
 - Backtrace the observation through the HMM, computing:
 $$\beta_i(t) = P(p_t = O_t, \ldots, p_T = O_T | q_t = h_i)$$

Typical application:

- Selecting the most likely out of several competing models.
- Customer behavior modeling: select the most likely customer profile
- Physics: select the most likely thermodynamics process
Decoding

- Compute the most likely sequence of hidden states for a given model M and a given observation sequence O.

$$H = \arg\max_H P(q_1 = H_1, \ldots, q_T = H_T | M, O)$$

- The most likely hidden path can be computed efficiently using the Viterbi-algorithm
 - The Viterbi algorithm is based on the Forward Algorithm.
 - It traces the most likely hidden states while reproducing the output sequence.

- Typical Applications:
 - POS tagging (observed: sentence, hidden: part-of-speech tags)
 - Speech recognition (observed: frequencies, hidden: phonemes)
 - Handwritten letter recognition (observed: pen patterns, hidden: letters)
 - Genome Analysis (observed: genome sequence, hidden: “structures”)

1. Supervised Learning
 - Given an observation sequence \(O\) and the corresponding hidden sequence \(H\), compute the most likely model \(M\) that produces those sequences:
 \[
 M = \arg\max_{M} P(p_1 = O_1, q_1 = H_1, \ldots, p_T = O_T, q_t = H_T | M)
 \]
 - Solved using “instance counting”
 - Count the hidden state transitions and output state emissions.
 - Use the relative frequencies as estimate for transition probabilities of \(M\).

2. Unsupervised Learning
 - Given an observation sequence \(O\), compute the most likely model \(M\) that produces this sequence:
 \[
 M = \arg\max_{M} P(p_1 = O_1 \ldots, p_T = O_T | M)
 \]
 - Solved using the Baum-Welch algorithm
 - Rather expensive iterative algorithm, but produces guaranteed EM result.
 - Requires a Forward step and a Backward Step through the model per iteration.
 - Alternative: Viterbi training
 - Not as expensive as Baum-Welch, but does not guarantee EM result
 - Requires only a Forward step through the model per iteration.
Agenda

- Motivation

- An Introduction to Hidden Markov Models
 - What is a Hidden Markov Model?

- Applications for Hidden Markov Models
 - What are the main problems for HMMs?
 - What are the algorithms to solve them?

- Hidden Markov Models for Apache Mahout
 - A short overview

- Outlook
 - Hidden Markov Models and Map Reduce
 - Take-Home Messages
Apache Mahout will contain an implementation of Hidden Markov Models in its upcoming 0.4 release.

- The implementation is currently sequential (i.e. not Map/Reduce enabled).
- The implementation covers Hidden Markov models with discrete output states.

The overall implementation structure is given by three main and two helper classes:

- **HmmModel**
 - Container for HMM parameters

- **HmmTrainer**
 - Methods to train a HmmModel from given observations

- **HmmEvaluator**
 - Methods to analyze (evaluate / decode) a given HmmModel

- **HmmUtils**
 - Helper methods, e.g. to validate and normalize a HmmModel

- **HmmAlgorithms**
 - Helper methods containing implementations of Forward, Backward and Viterbi algorithm.
HmmmModel

- HmmModel is the main class for defining a Hidden Markov Model.
 - It contains the transition matrix K, emission matrix O and initial probability vector \(\pi \).

- Construction from given Mahout matrices K, O and Mahout vector pi:
 - `HmmModel model = new HmmModel(K, O, pi);`

- Construction of a random model with \(n \) hidden and \(m \) observable states:
 - `HmmModel model = new HmmModel(n, m);`

- Offers serialization and deserialization from/to JSON:
 - `HmmModel model = HmmModel.fromJson(String json);`
 - `String json = model.toJson();`
HmmTrainer

- Offers a collection of learning algorithms.
- Supervised learning from hidden and observed state sequences:
 - `HmmModel trainSupervised(int hiddenStates, int observedStates, int[] hiddenSequence, int[] observedSequence, double pseudoCount);`
 - *Used to avoid zero probabilities*

- Unsupervised learning using the Viterbi algorithm:
 - `HmmModel trainViterbi(HmmModel initialModel, int[] observedSequence, double pseudoCount, double epsilon, int maxIterations, boolean scaled);`
 - *Use log-scaled implementation – slower but numerically more stable*

- Unsupervised learning using the Baum-Welch algorithm:
 - `HmmModel trainBaumWelch(HmmModel initialModel, int[] observedSequence, double epsilon, int maxIterations, boolean scaled);`
 - *Use log-scaled implementation – slower but numerically more stable*
Offers algorithms to evaluate an HmmModel

Generating a sequence of output states from the given model:

- int[] predict(HmmModel model, int steps);

Computing the model likelihood for a given observation:

- double modelLikelihood(HmmModel model, int[] observations, boolean scaled);

Use log-scaled implementation – slower but numerically more stable

Compute most likely hidden path for given model and observation:

- int[] decode(HmmModel model, int[] observations, boolean scaled);

Use log-scaled implementation – slower but numerically more stable
Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
 □ What is a Hidden Markov Model?

■ Applications for Hidden Markov Models
 □ What are the main problems for HMMs?
 □ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
 □ A short overview

■ Outlook
 □ Hidden Markov Models and Map Reduce
 □ Take-Home Messages
How can we make HMMs Map Reduce enabled?

Problem:
- All the presented algorithms are highly sequential!
- There is no easy way of parallelizing them.

However:
- Hidden Markov Models are often compact (n, m not “too large”)
- The most typical application on a trained HMM is decoding, which can be performed fairly efficient on a single machine.
 - Trained HMMs can typically be efficiently used within Mappers/Reducers.
- The most expensive – and data intensive – application on HMMs is training.
 - Main Goal: parallelize HMM training.
- Approaches to parallelizing learning:
 - For supervised learning: trivial, only need to count state changes.
 - For unsupervised learning: tricky, ongoing research:
 » Merging of trained HMMs on subsequences
 » Alternative representations allows training via parallelizable algorithms (e.g. SVD)
Hidden Markov Models (HMMs) are a statistical tool to model processes that produce observations based on a hidden state sequence:

- HMMs consist of a discrete hidden variable that randomly and sequentially changes its state and a random observable variable.
- Hidden state change probability depends only on the k prior hidden states
 - A typical value for k is 1.
- Probability of the observable variable depends only on current hidden state.

Three main problems for HMMs: evaluation, decoding and training:

- Evaluation: Likelihood a given model generated a given observed sequence.
 ➔ Forward Algorithm
- Decoding: Most likely hidden sequence for a given observed sequence and model.
 ➔ Viterbi Algorithm
- Training: Most likely model that generated a given observed sequence (unsupervised) or a given observed and hidden sequence (supervised).
 ➔ Baum-Welch Algorithm
HMMs can be applied whenever an underlying process generates sequential data:

- Speech Recognition, Handwritten Letter Recognition, Part-of-speech tagging, Genome Analysis, Customer Behavior Analysis, Context aware Search, ...

Mahout contains a HMM implementation in its upcoming 0.4 release.

- Three main classes: HmmModel, HmmTrainer, HmmEvaluator
- HmmModel is a container class for representing model parameters.
- HmmTrainer contains implementations for the learning problem.
- HmmEvaluator contains implementations for the evaluation and decoding problem.

Porting HMMs to Map/Reduce is non-trivial

- Typically, HMMs can be used within a Mapper/Reducer.
- Most data-intensive task for HMMs: training
- Porting HMM training to Map/Reduce is ongoing research.
Thank you!

The end... my only friend, the end