

Apache Hadoop
Large scale data processing

Speaker: Isabel Drost

Isabel Drost

Nighttime:
Co-Founder Apache Mahout.

 Organizer of Berlin Hadoop Get Together.

Daytime:
Software developer

Hello FOSDEM visitors!

How many know Hadoop?

Hello FOSDEM visitors!

How many Hadoop users?

Hello FOSDEM visitors!

How many nodes?

Hello FOSDEM visitors!

Zookeeper?

Hello FOSDEM visitors!

Hive?

Hello FOSDEM visitors!

HBase?

Hello FOSDEM visitors!

Pig?

Hello FOSDEM visitors!

Lucene?

Hello FOSDEM visitors!

Solr?

Hello FOSDEM visitors!

 Mahout?

Hello FOSDEM visitors!

Agenda

● Collecting and storing
data.

● Tour of Hadoop.

● Analysing data.

● Hadoop ecosystem.

Collecting and storing data.

By Lab2112, http://www.flickr.com/photos/lab2112/462388595/

Data storage optionsData storage options

● Structured, relational.
● Customer data.
● Bug database.

 By bareform, http://www.flickr.com/photos/bareform/2483573213/

 January 8, 2008 by Pink Sherbet Photography
http://www.flickr.com/photos/pinksherbet/2177961471/

Massive data as in:

Cannot be stored on single machine.
Takes too long to process in serial.

Idea: Use multiple machines.

Challenges when scaling out.

Single machines tend to fail:
Hard disk.

Power supply.
...

 January 11, 2007, skreuzer
http://www.flickr.com/photos/skreuzer/354316053/

More machines – increased
failure probability.

Requirements

● Built-in backup.
● Built-in failover.

Typical developer

● Has never dealt with
large (petabytes)
amount of data.

● Has no thorough
understanding of
parallel programming.

● Has no time to make
software production
ready.

September 10, 2007 by .sanden.
http://www.fickr.com/photos/daphid/1354523220/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

Picture of developers / community

February 29, 2008 by Thomas Claveirole
http://www.fickr.com/photos/thomasclaveirole/2300932656/

 May 1, 2007 by danny angus
http://www.fickr.com/photos/killerbees/479864437/

http://www.fickr.com/photos
/jaaronfarr/3385756482/
March 25, 2009 by jaaron

http://www.fickr.com/photos/jaaronfarr/3384940437/
March 25, 2009 by jaaron

http://www.flickr.com/photos
http://www.flickr.com/photos/jaaronfarr/3384940437/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

● Active development.

http://www.flickr.com/photos/cspowers/282944734/ by cspowers on October 29, 2006

http://www.flickr.com/photos/cspowers/282944734/
http://www.flickr.com/photos/cspowers/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to administrate.
● Single system.

● Easy to use.
● Parallel on rails.

● Active development.

Easy distributed programming.

Well known in industry and research.

Scales well beyond 1000 nodes.

Some history.

Feb '03 first Map Reduce library @ Google

Oct '03 GFS Paper

Dec '04 Map Reduce paper

Dec '05 Doug reports that nutch uses map reduce

Feb '06 Hadoop moves out of nutch

Apr '07 Y! running Hadoop on 1000 node cluster

Jan '08 Hadoop made an Apache Top Level Project

Petabyte sorting benchmark

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks, 8G RAM (upgraded to

16GB before petabyte sort), 1 gigabit ethernet.

Per Rack: 40 nodes, 8 gigabit ethernet uplinks.

Hadoop assumptions

Assumptions:
Data to process does not fit on one node.

Each node is commodity hardware.
Failure happens.

Ideas:
Distribute filesystem.

Built in replication.
Automatic failover in case of failure.

January 16, 2005 by JohnSeb
http://www.flickr.com/photos/johnseb/3425464/

http://www.flickr.com/photos/johnseb/archives/date-posted/2005/01/16/
http://www.flickr.com/photos/johnseb/

Assumptions:
Distributed computation is easy.

Moving computation is cheap.
Moving data is expensive.

Ideas:
Move computation to data.

Write software that is easy to distribute.

December 31, 2007 by Ian-S
http://www.flickr.com/photos/ian-s/2152798588/

http://www.flickr.com/photos/ian-s/archives/date-posted/2007/12/31/
http://www.flickr.com/photos/ian-s/

Assumptions:
Systems run on spinning hard disks.

Disk seek >> disk scan.

Ideas:

Improve support for large files.
File system API makes scanning easy.

August 27, 2007 by Stuart Bryant
http://www.flickr.com/photos/stuartbryant/1249649001/

http://www.flickr.com/photos/stuartbryant/archives/date-posted/2007/08/27/
http://www.flickr.com/photos/stuartbryant/

HDFS building blocks

(Graphics: Thanks to Thilo.)

NameNode
● Stores file meta data.
● In memory.
● Block-node mapping.

DataNode
● Stores file contents.
● On disk.
● Block-Id to disk.

Anatomy of a file write

HDFS client

Client node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a file write

HDFS client

Client node

Name Node
Create file

Close file

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a file write

HDFS client

Client node

Name Node
Create file

Close file

Data Node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Write packet

Ack packet

Anatomy of a file write

HDFS client

Client node

Name Node
Create file

Close file

Data Node

Data Node

Data Node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Write packet

Ack packet

HDFS Replication Strategy

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Datacenter

Rack Rack

HDFS client

Client node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a file read

HDFS client

Client node

Name Node
Open file

Close file

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a file read

HDFS client

Client node

Name Node
Open file

Close file

Data Node

Data Node

Data Node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Read blocks

Read blocks

Read blocks

Anatomy of a file read

Analyse and understand your data.

Map/Reduce by example

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml | sort | uniq --count

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml

 M A P | SHUFFLE | R E D U C E

| sort | uniq --count

Input

Map Map Map Map Map

Input

Map Map Map Map Map

Intermediate Output
k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3

Input

Map Map Map Map Map

Intermediate Output

Shuffl e
Groups by key

Intermediate Output

k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3

Input

Map Map Map Map Map

Intermediate Output

Shuffl e
Groups by key

Intermediate Output

Output

k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3

Reduce Reduce

k1:v1, k1:v2, k1:v3 k2:v1, k2:v1, k2:v1

private IntWritable one = new IntWritable(1);
private Text hostname = new Text();

public void map(K key, V value, Context context) {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 hostname.set(getHostname(tokenizer.nextToken()));
 context.write(hostname, one);
 }
}

public void reduce(K2 key, Iterable<V2> values,
 OutputCollector<K3, V2> output) {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
}

(Graphics: Thanks to Thilo.)

Anatomy of a map/reduce job

Client app

Client node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

TaskTracker

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

TaskTracker

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Map Job or
Reduce

Job

JobJVM

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

TaskTracker

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Map Job or
Reduce

Job

JobJVM

TaskTracker

Map Job or
Reduce

Job

JobJVM

TaskTracker

Map Job or
Reduce

Job

JobJVM

March 14, 2009 by Artful Magpie
http://www.flickr.com/photos/kmtucker/3355551036/

Requirements to get started

http://www.flickr.com/photos/kmtucker/archives/date-posted/2009/03/14/
http://www.flickr.com/photos/kmtucker/

(Thanks to Thilo for helping set up the
cluster, Thanks to packet and masq
for two of the three machines.)

Up next.

http://www.flickr.com/photos/87106931@N00/3835231300/
By mhobl

http://www.flickr.com/photos/87106931@N00/3835231300/

Up next.

● In 0.21:
● append/sync in HDFS
● more advanced task schedulers

● In 0.22:
● security
● avro-based rpc for cross-version rpc compatibility
● symbolic links
● federated NameNodes

Hadoop ecosystem.

Higher level languages.

Example from PIG presentation at Apache Con EU 2009

Example from PIG presentation at Apache Con EU 2009

(Distributed) storage.

Libraries built on top.

avro generic avro specific protobuf thrift hessian java java externalizable

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

object create
serialize
deserialize
total
size

Jumpstart your project with proven code.

 January 8, 2008 by dreizehn28
http://www.flickr.com/photos/1328/2176949559

Discuss ideas and problems online.

 November 16, 2005 [phil h]
http://www.flickr.com/photos/hi-phi/64055296

http://www.flickr.com/photos/twleung/4110005817/
http://www.flickr.com/photos/vonguard/4076391191

*-user@hadoop.apache.org

*-dev@hadoop.apache.org

Interest in solving hard problems.

Being part of lively community.

Engineering best practices.

Bug reports, patches, features.

Documentation, code, examples.
Image by: Patrick McEvoy

Mar., 10th 2010: Hadoop* Get Together in Berlin

● Bob Schulze (eCircle/ Munich): Database and Table Design Tips with
HBase

● Dragan Milosevic (zanox/ Berlin): Product Search and Reporting
powered by Hadoop

● Chris Male (JTeam/ Amsterdam): Spatial Search

http://upcoming.yahoo.com/event/5280014/

* UIMA, Hbase, Lucene, Solr, katta, Mahout, CouchDB, pig, Hive, Cassandra, Cascading, JAQL, ... talks welcome as well.

Store, Search, Scale

Lucene Sphinx

Hadoop

Business Intelligence
NoSQL

HBase

ScalabilityCloud Computing

Distributed computing

Solr

CouchDB

MongoDB

Isabel Drost
Jan Lehnardt
newthinking store
Simon Willnauer

June 7/8th: Berlin Buzzwords 2010

*-user@hadoop.apache.org

*-dev@hadoop.apache.org

Interest in solving hard problems.

Being part of lively community.

Engineering best practices.

Bug reports, patches, features.

Documentation, code, examples.
Image by: Patrick McEvoy

 M A P | SHUFFLE | R E D U C E

Local to data.

 M A P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output

 M A P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output

 M A P | SHUFFLE | R E D U C E
output

result

result

input

Local to data.
Outputs a lot less data.
Output can cheaply move.

Shuffle sorts input by key.
Reduces output significantly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

