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Nighttime:
Co-Founder Apache Mahout.

          Organizer of Berlin Hadoop Get Together.

Daytime:
Software developer
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How many know Hadoop?
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How many Hadoop users?

Hello FOSDEM visitors!



  

How many nodes?

Hello FOSDEM visitors!



  

Zookeeper?

Hello FOSDEM visitors!



  

Hive?

Hello FOSDEM visitors!



  

HBase?
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Pig?
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Lucene?

Hello FOSDEM visitors!



  

Solr?

Hello FOSDEM visitors!



  Mahout?
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Agenda

● Collecting and storing 
data.

● Tour of Hadoop.

● Analysing data.           
  

● Hadoop ecosystem.



  

Collecting and storing data.



  
By Lab2112, http://www.flickr.com/photos/lab2112/462388595/



  

Data storage optionsData storage options

● Structured, relational.
● Customer data.
● Bug database.



  By bareform, http://www.flickr.com/photos/bareform/2483573213/



  

         January 8, 2008 by Pink Sherbet Photography
http://www.flickr.com/photos/pinksherbet/2177961471/

Massive data as in:

Cannot be stored on single machine.
Takes too long to process in serial.

Idea: Use multiple machines.



  

Challenges when scaling out.



  

Single machines tend to fail:
Hard disk.

Power supply.
...



  January 11, 2007, skreuzer
http://www.flickr.com/photos/skreuzer/354316053/

More machines – increased
failure probability.



  

Requirements

● Built-in backup.
● Built-in failover.



  

Typical developer

● Has never dealt with 
large (petabytes) 
amount of data.

● Has no thorough 
understanding of 
parallel programming.

● Has no time to make 
software production 
ready.

September 10, 2007 by .sanden.   
http://www.fickr.com/photos/daphid/1354523220/



  

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.



  

Picture of developers / community

February 29, 2008 by Thomas Claveirole
http://www.fickr.com/photos/thomasclaveirole/2300932656/

 May 1, 2007 by danny angus
http://www.fickr.com/photos/killerbees/479864437/

http://www.fickr.com/photos
/jaaronfarr/3385756482/ 
March 25, 2009 by jaaron

http://www.fickr.com/photos/jaaronfarr/3384940437/
March 25, 2009 by jaaron

http://www.flickr.com/photos
http://www.flickr.com/photos/jaaronfarr/3384940437/


  

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

● Active development.



  
http://www.flickr.com/photos/cspowers/282944734/ by cspowers on October 29, 2006

http://www.flickr.com/photos/cspowers/282944734/
http://www.flickr.com/photos/cspowers/


  

Requirements

● Built-in backup.
● Built-in failover.

● Easy to administrate.
● Single system.

● Easy to use.
● Parallel on rails.

● Active development.



  

Easy distributed programming.

Well known in industry and research.

Scales well beyond 1000 nodes.



  

Some history.



  

Feb '03 first Map Reduce library @ Google 

Oct '03 GFS Paper 

Dec '04 Map Reduce paper 

Dec '05 Doug reports that nutch uses map reduce 

Feb '06 Hadoop moves out of nutch 

Apr '07 Y! running Hadoop on 1000 node cluster 

Jan '08 Hadoop made an Apache Top Level Project



  

Petabyte sorting benchmark

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks,  8G RAM (upgraded to

16GB before petabyte sort), 1 gigabit ethernet.

Per Rack: 40 nodes, 8 gigabit ethernet uplinks.



  

Hadoop assumptions



  

Assumptions:
Data to process does not fit on one node.

Each node is commodity hardware.
Failure happens.

Ideas:
Distribute filesystem.

Built in replication.
Automatic failover in case of failure.

January 16, 2005 by JohnSeb
http://www.flickr.com/photos/johnseb/3425464/

http://www.flickr.com/photos/johnseb/archives/date-posted/2005/01/16/
http://www.flickr.com/photos/johnseb/


  

Assumptions:
Distributed computation is easy.

Moving computation is cheap.
Moving data is expensive.

Ideas:
Move computation to data.

Write software that is easy to distribute.

December 31, 2007 by Ian-S
http://www.flickr.com/photos/ian-s/2152798588/

http://www.flickr.com/photos/ian-s/archives/date-posted/2007/12/31/
http://www.flickr.com/photos/ian-s/


  

Assumptions:
Systems run on spinning hard disks.

Disk seek >> disk scan.

Ideas:

Improve support for large files.
File system API makes scanning easy.

August 27, 2007 by Stuart Bryant
http://www.flickr.com/photos/stuartbryant/1249649001/

http://www.flickr.com/photos/stuartbryant/archives/date-posted/2007/08/27/
http://www.flickr.com/photos/stuartbryant/


  



  

HDFS building blocks



  
(Graphics: Thanks to Thilo.)



  

NameNode
● Stores file meta data.
● In memory.
● Block-node mapping.

DataNode
● Stores file contents.
● On disk.
● Block-Id to disk.



  

Anatomy of a file write

HDFS client

Client node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly



  

Anatomy of a file write

HDFS client

Client node

Name Node
Create file

Close file

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly



  

Anatomy of a file write

HDFS client

Client node

Name Node
Create file

Close file

Data Node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Write packet

Ack packet



  

Anatomy of a file write

HDFS client

Client node

Name Node
Create file

Close file

Data Node

Data Node

Data Node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Write packet

Ack packet



  

HDFS Replication Strategy

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Datacenter

Rack Rack



  

HDFS client

Client node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a file read



  

HDFS client

Client node

Name Node
Open file

Close file

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Anatomy of a file read



  

HDFS client

Client node

Name Node
Open file

Close file

Data Node

Data Node

Data Node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Read blocks

Read blocks

Read blocks

Anatomy of a file read



  

Analyse and understand your data.



  

Map/Reduce by example



  



  



  

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml | sort | uniq --count



  

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml 

    M  A   P                  | SHUFFLE | R E D U C E

| sort | uniq --count



  

Input

Map Map Map Map Map



  

Input

Map Map Map Map Map

Intermediate Output
k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3



  

Input

Map Map Map Map Map

Intermediate Output

Shuffl e
Groups by key

Intermediate Output

k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3



  

Input

Map Map Map Map Map

Intermediate Output

Shuffl e
Groups by key

Intermediate Output

Output

k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3

Reduce Reduce

k1:v1, k1:v2, k1:v3 k2:v1, k2:v1, k2:v1



  

private IntWritable one = new IntWritable(1); 
private Text hostname = new Text();

public void map(K key, V value, Context context) { 
  String line = value.toString(); 
  StringTokenizer tokenizer = new StringTokenizer(line); 
  while (tokenizer.hasMoreTokens()) {
    hostname.set(getHostname(tokenizer.nextToken())); 
    context.write(hostname, one); 
  } 
}

public void reduce(K2 key, Iterable<V2> values,   
  OutputCollector<K3, V2> output) { 
  int sum = 0; 
  while (values.hasNext()) { 
    sum += values.next().get(); 
  } 
  output.collect(key, new IntWritable(sum)); 
} 



  
(Graphics: Thanks to Thilo.)



  

Anatomy of a map/reduce job

Client app

Client node

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly



  

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly



  

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

TaskTracker

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly



  

Anatomy of a map/reduce job

Client app

Client node

Job Tracker
Submit Job

TaskTracker

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly

Map Job or
Reduce

Job

JobJVM



  

Anatomy of a map/reduce job
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Client node

Job Tracker
Submit Job

TaskTracker

Slide inspired by: “Hadoop – The definitive guide”, Tom White, O'Reilly
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March 14, 2009 by Artful Magpie
http://www.flickr.com/photos/kmtucker/3355551036/

Requirements to get started

http://www.flickr.com/photos/kmtucker/archives/date-posted/2009/03/14/
http://www.flickr.com/photos/kmtucker/


  



  



  



  

(Thanks to Thilo for helping set up the 
cluster, Thanks to packet and masq 
for two of the three machines.)



  



  

Up next.

http://www.flickr.com/photos/87106931@N00/3835231300/
By mhobl

http://www.flickr.com/photos/87106931@N00/3835231300/


  

Up next.

● In 0.21:
● append/sync in HDFS
● more advanced task schedulers                           

● In 0.22:
● security
● avro-based rpc for cross-version rpc compatibility
● symbolic links   
● federated NameNodes     



  



  

Hadoop ecosystem.



  

Higher level languages.



  



  



  
Example from PIG presentation at Apache Con EU 2009





  
Example from PIG presentation at Apache Con EU 2009



  

(Distributed) storage.



  



  

Libraries built on top.



  
avro generic avro specific protobuf thrift hessian java java externalizable
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Jumpstart your project with proven code.

                 January 8, 2008 by dreizehn28
http://www.flickr.com/photos/1328/2176949559



  

Discuss ideas and problems online.

                   November 16, 2005 [phil h]
http://www.flickr.com/photos/hi-phi/64055296



http://www.flickr.com/photos/twleung/4110005817/
http://www.flickr.com/photos/vonguard/4076391191


  

*-user@hadoop.apache.org

*-dev@hadoop.apache.org 

Interest in solving hard problems.

Being part of lively community.

Engineering best practices.

Bug reports, patches, features.

Documentation, code, examples.
Image by: Patrick McEvoy 



  

Mar., 10th 2010:  Hadoop* Get Together in Berlin

● Bob Schulze (eCircle/ Munich): Database and Table Design Tips with 
HBase

● Dragan Milosevic (zanox/ Berlin): Product Search and Reporting 
powered by Hadoop

● Chris Male (JTeam/ Amsterdam): Spatial Search

http://upcoming.yahoo.com/event/5280014/

* UIMA, Hbase, Lucene, Solr, katta, Mahout, CouchDB, pig, Hive, Cassandra, Cascading, JAQL, ... talks welcome as well.

                      



  

Store, Search, Scale

Lucene Sphinx

Hadoop

Business Intelligence
NoSQL

HBase

ScalabilityCloud Computing

Distributed computing

Solr

CouchDB

MongoDB

Isabel Drost
Jan Lehnardt
newthinking store
Simon Willnauer

June 7/8th: Berlin Buzzwords 2010



  

*-user@hadoop.apache.org

*-dev@hadoop.apache.org 

Interest in solving hard problems.

Being part of lively community.

Engineering best practices.

Bug reports, patches, features.

Documentation, code, examples.
Image by: Patrick McEvoy 





  



  



  

 M  A   P | SHUFFLE | R E D U C E

Local to data.



  

 M  A   P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output



  

 M  A   P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output



  

 M  A   P | SHUFFLE | R E D U C E
output

result

result

input

Local to data.
Outputs a lot less data.
Output can cheaply move.

Shuffle sorts input by key.
Reduces output significantly.
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