

From Data to Information
Apache Mahout

Speaker: Isabel Drost

Isabel Drost

Nighttime:
Came to nutch in 2004.

Co-Founder Apache Mahout.
 Organizer of Berlin Hadoop Get Together.
Daytime:

Software developer @ Berlin

Hello FrOSCon visitors!

Agenda

● Motivation.

● HowTo: A path from data to information.

● Introduction to Mahout.

 January 3, 2006 by Matt Callow
http://www.flickr.com/photos/blackcustard/81680010

News aggregation

Today: Read news papers,
Blogs, Twitter, RSS feed.

Wish: Aggregate sources
and track emerging topics.

 September 10, 2008 by Alex Barth
http://www.flickr.com/photos/a-barth/2846621384

 September 21, 2008, Rodrigo Galindez

http://www.flickr.com/photos/rodrigogalindez/2877367250/

Go to cinema

Today: IMDB, zitty, movie review
pages, twitter, blogs, ask friends.

Wish: Reviews, sentiment
detection, recommendations.

 March 22, 2008 by Crystian Cruz
http://www.flickr.com/photos/crystiancruz/2353895708

HowTo: From data to information.

From data to information.

● Start collecting and storing data.

● Analyse and understand data.

● Answer more complex questions.

 January 8, 2008 by Pink Sherbet Photography
http://www.flickr.com/photos/pinksherbet/2177961471/

Data storage optionsData storage options

● Structured, relational.
– Customer data.

– Bug database.

Data storage optionsData storage options

● Structured, relational .
– Customer data.

– Bug database.

● Continuous files.
– Log data.

– Document Stream.

 January 8, 2008 by Pink Sherbet Photography
http://www.flickr.com/photos/pinksherbet/2177961471/

Massive data as in:

Cannot be stored on single machine.
Takes too long to process in serial.

Idea: Use multiple machines.

Challenges when scaling out.

Single machines tend to fail:
Hard disk.

Power supply.
...

 January 11, 2007, skreuzer
http://www.flickr.com/photos/skreuzer/354316053/

More machines – increased
failure probability.

Requirements

● Built-in backup.
● Built-in failover.

Typical developer

● Has never dealt with
large (petabytes)
amount of data.

● Has no thorough
understanding of
parallel programming.

● Has no time to make
software production
ready.

September 10, 2007 by .sanden.
http://www.fickr.com/photos/daphid/1354523220/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

Picture of developers / community

February 29, 2008 by Thomas Claveirole
http://www.fickr.com/photos/thomasclaveirole/2300932656/

 May 1, 2007 by danny angus
http://www.fickr.com/photos/killerbees/479864437/

http://www.fickr.com/photos
/jaaronfarr/3385756482/
March 25, 2009 by jaaron

http://www.fickr.com/photos/jaaronfarr/3384940437/
March 25, 2009 by jaaron

http://www.flickr.com/photos
http://www.flickr.com/photos/jaaronfarr/3384940437/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

● Active development.

http://www.flickr.com/photos/cspowers/282944734/ by cspowers on October 29, 2006

http://www.flickr.com/photos/cspowers/282944734/
http://www.flickr.com/photos/cspowers/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to administrate.
● Single system.

● Easy to use.
● Parallel on rails.

● Active development.

Easy distributed programming.

Well known in industry and research.

Scales well beyond 1000 nodes.

Petabyte sorting benchmark

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks, 8G RAM (upgraded to

16GB before petabyte sort), 1 gigabit ethernet.

Per Rack: 40 nodes, 8 gigabit ethernet uplinks.

Assumptions:
Data to process does not fit on one node.

Each node is commodity hardware.
Failure happens.

Ideas:
Distribute filesystem.

Built in replication.
Automatic failover in case of failure.

Assumptions:
Moving data is expensive.

Moving computation is cheap.
Distributed computation is easy.

Ideas:
Move computation to data.

Write software that is easy to distribute.

Assumptions:
Systems run on spinning hard disks.

Disk seek >> disk scan.

Ideas:

Improve support for large files.
File system API makes scanning easy.

Data storage optionsData storage options

● Structured, relational .
– Customer data.

– Bug database.

● Semi-structured data:
– Documents.

– Independent rows.

● Continuous files.
– Log data.

– Document Stream.

Store in RDBMS?

● Possible.

● Becomes expensive pretty quickly.

Store in Hadoop DFS?

● Optimised for LARGE files.

● Throughput vs. latency.

Something in between?

● Transactions – can we do without?

● Joins – some applications don't need them.

From data to information.

● Start collecting and storing your data.

● Analyse and understand your data.

● Answer more complex questions.

Understanding your data

● Data profiling.

● Goals:
– Identify usual behaviour.

– Find exceptional cases.

● Exact questions depend on domain.

Example questions

● Structured data:
– Shopping: Amount of money usually spent.

– Average age of your customers.

– Min/Max number of shopping sessions.

● Textual documents:
– Average length of documents.

– Distribution of document topics.

– Distribution of authors.

Visualizations help

Understanding your data

● Structured data in RDBMS:
– Functionality built-in (min, max etc.)

● Unstructured or Semistructured data in HDFS:
– Write analysis code in Java. (Map/Reduce jobs).

– Use higher level language.

Map/Reduce by example

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml | sort | uniq --count

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml

 M A P | SHUFFLE | R E D U C E

| sort | uniq --count

 M A P | SHUFFLE | R E D U C E

Local to data.

 M A P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output

 M A P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output

 M A P | SHUFFLE | R E D U C E
output

result

result

input

Local to data.
Outputs a lot less data.
Output can cheaply move.

Shuffle sorts input by key.
Reduces output significantly.

private IntWritable one = new IntWritable(1);
private Text hostname = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 hostname.set(getHostname(tokenizer.nextToken()));
 output.collect(hostname, one);
 }
}

public void reduce(Text key, Iterator<IntWritable>
values, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
}

Higher level languages.

Filtering/ Aggregating in Hadoop

Example from PIG presentation at Apache Con EU 2009

Example from PIG presentation at Apache Con EU 2009

Example from PIG presentation at Apache Con EU 2009

From data to information.

● Start collecting and storing your data.

● Analyse and understand your data.

● Answer more complex questions.

More complex questions

● Which products are commonly bought together.
● What groups of search results were returned.
● Predict probability of user clicking an ad.
● Identify emerging topics in news stories.
● Find source code commonly changed together.
● Identify malicious access patterns to servers.

Machine learning – what's that?

Image by John Leech, from: The Comic History of Rome by Gilbert Abbott A Beckett.

Bradbury, Evans & Co, London, 1850s
Archimedes taking a Warm Bath

Archimedes model of nature

 June 25, 2008 by chase-me
http://www.flickr.com/photos/sasy/2609508999

An SVM's model of nature

Scaling machine learning.

Contributions need not be
Java based:

PIG, JAQL, Cascading, ...?

● Industry ready.
– Friendly license.

– Scalable.

● Easy to use.
– Well documented.

– Well maintained by healthy and active community.

● Easy to extend and contribute to.
– Automated tests.

– Easy to build and deploy.

What does Mahout have to offer.

Discover groups of items

● Group items by similarity.

● Examples:
– Group news articles by topic.

– Find developers with similar interests.

– Discovery of groups of related search results.

Discover groups of similar items

● Canopy.

● k-Means.

● Fuzzy k-Means.

● Dirichlet based.

● Others upcoming.

Identify dominant topics

● Given a dataset of texts, identify main topics.

● Examples:
– Dominant topics in set of mails.

– Identify news message categories.

Algorithms: Parallel LDA

Assign items to defined categories.

● Given pre-defined categories, assin items to it.

● Examples:
– Spam mail classification.

– Discovery of images depicting humans.

Assign items to defined categories.

● Naïve Bayes.

● Complementary naïve
bayes.

● Winnow/Perceptron.

● Others upcoming.

Recommendation mining.

● Recommend items to users.

● Examples:
– Find movies I might want to watch.

– Find books related to the book I am buying.

– Find people I might want to meet.

– Recommend locations to items.

Recommendation mining.

● Integrated Taste.
● Mature Java library.
● Java-based, web service / HTTP bindings.

● Batch mode based on EC2 and Hadoop.

Frequent pattern mining

● Given groups of items, find commonly co-
occurring items.

● Examples:
– In shopping carts find items bought together.

– In query logs find queries issued in one session.

Release: 0.1
Big Thanks to those who made this possible!

Mahout is running on Amazon EMR.

 October 22, 2008 by e_calamar
http://www.flickr.com/photos/e_calamar/2964991182/

Why go for Apache Mahout?

Jumpstart your project with proven code.

 January 8, 2008 by dreizehn28
http://www.flickr.com/photos/1328/2176949559

Discuss ideas and problems online.

 November 16, 2005 [phil h]
http://www.flickr.com/photos/hi-phi/64055296

Become part of the community.

<project>-user@[lucene|hadoop].apache.org

<project>-dev@[lucene|hadoop].apache.org

Interest in solving hard problems.

Being part of lively community.

Engineering best practices.

Bug reports, patches, features.

Documentation, code, examples.
July 9, 2006 by trackrecord
http://www.flickr.com/photos/trackrecord/185514449

Sept., 29th 2009: Hadoop* Get Together in Berlin

● Thilo Götz: “JAQL”

● Thorsten Schütt: “Solving puzzles with Map/Reduce”

● Uwe Schindler: “Lucene 2.9 with focus on range search.”

● nugg.ad GmbH: “Using Hadoop for ad recommendation.”

 newthinking store

 Tucholskystr. 48

December 2009: Hadoop* Get Together in Berlin.

* UIMA, Hbase, Lucene, Solr, katta, Mahout, CouchDB, pig, Hive, Cassandra, Cascading, JAQL, ... talks welcome as well.

<project>-user@[lucene|hadoop].apache.org

<project>-dev@[lucene|hadoop].apache.org

Interest in solving hard problems.

Being part of lively community.

Engineering best practices.

Bug reports, patches, features.

Documentation, code, examples.
July 9, 2006 by trackrecord
http://www.flickr.com/photos/trackrecord/185514449

Going parallel: k-Means

Until stable.

Until stable.

Data intensive.
Output: Cluster assignment.
Pre-Compute centers.

Done in Map.

Until stable.

Data intensive.
Output: Cluster assignment.
Pre-Compute centers.

Done in Map. Done in Reduce.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

