

Text Analysis with JAQL

Thilo Goetz, IBM R&D Germany

Hadoop users group meeting, Berlin,
9/29/2009

Text Analysis with JAQL

Thilo Goetz, IBM R&D Germany

Hadoop users group meeting, Berlin,
9/29/2009

JAQL

• JAQL: JSON Query Language
• Scripting language to manipulate JSON
• Runs on top of Hadoop
• Developed at IBM Almaden Research

Center (Kevin Beyer, Vuk Ercegovac et al.)
• I stole reuse their examples

• Open source at www.jaql.org
• JAQL syntax is under active development

and should not be consider fixed yet

JSON example (sloppy)
{

text: "This is some sample text.",
tokens: [

{
begin: 0,
end: 4,
pos: "DT",
pos-confidence: 0.83

},
...

]
}

JSON

• Javascript Object Notation
• Simple, textual format for object

serialization (UTF-8)
• Semi-structured

• Basic data structures (arrays, numbers,
booleans, strings)

• Records not typed

• Bindings available for many programming
languages

JSON vs. XML

• JSON is for data, XML is for documents

• XML has no support for arrays and primitive
data types

• JSON has no text mark-up
• JSON is simple and lightweight, XML is powerful

and complex

• The core Java JSON API consists only of seven
classes

• XML has a lot more tooling than JSON (such as
XSLT)

Enter JAQL

• JAQL is a scripting language for
manipulating JSON data

• Easily extend JAQL by writing your own
Java functions

• JAQL expressions are compiled to Hadoop
map/reduce jobs

JAQL pipes
[

 { id: 12, name: “Joe Smith”,
 bday: date(“1971-03-07”), zip: 94114 },
 { id: 17, name: “Ann Jones”,
 bday: date(“1973-02-04”), zip: 94110 },
 { id: 19, name: “Alicia Fox”,
 bday: date(“1975-04-20”), zip: 94114 }
]

read(hdfs("users"))
-> filter $.zip == 94114
-> transform {$.id, fullname: $.name}
-> write(hdfs("inzip"));

[
 { id: 12, fullname: “Joe Smith” },
 { id: 19, fullname: “Alicia Fox” }
]

Group

• Group objects by values into new objects
• ["the", "man", "with", "the", "telescope"]

-> group by $word = $
 into { $word, num: count($) };

• [{ word: "the", num: 2},
 {word: "man", num: 1}, ...]

More core language features

• Join: join two or more arrays on a common
attribute

• Sort: sort arrays by values (may be
complex objects)

• Expand: expand embedded arrays into
individual values

• Also supports conditionals, loops and
recursion

Expand and transform

$books = [
 {publisher: 'Scholastic',
 author: 'J. K. Rowling',
 title: 'Chamber of Secrets',
 year: 1999,
 reviews: [
 {rating: 10, user: 'joe', review: 'The best ...'},
 {rating: 6, user: 'mary', review: 'Average ...'}]},
 {publisher: 'Scholastic',
 author: 'R. L. Stine',
 title: 'Monster Blood IV',
 year: 1997,
 reviews: [
 {rating: 8, user: 'rob', review: 'High on my list...'},
 {rating: 2, user: 'mike', review: 'Not worth the paper ...',
 discussion:
 [{user: 'ben', text: 'This is too harsh...'},
 {user: 'jill', text: 'I agree ...'}]}]}
]

Expand and transform

$books
-> expand $.reviews
-> transform $.user;

[
 "joe",
 "mary",
 "rob",
 "mike"
]

JAQL and Map/Reduce

• JAQL runs on Apache Hadoop
• JAQL queries are automatically translated

into Hadoop M/R programs
• JAQL programmers are not required to

know M/R details...
• ...but can get at them if they want to

JAQL M/R example
// Query 1. Return the publisher and title of each
// book.
 read(hdfs("books"))
 -> transform {$.publisher, $.title};

 // Explain Query 1: Jaql automatically rewrites the
 // query into a map-only job
 stRead(
 mapReduce(
 {input : { type: "hdfs", location: "books"},
 output : HadoopTemp(),
 map : fn ($mapIn) [[null,

{ $mapIn.publisher, $mapIn.title }]]
 }));

Another M/R example

// Run a map/reduce job that counts the number of
// objects for each 'x' value.
 mapReduce(
 { input: {type: "hdfs", location: "sample.dat"},
 output: {type: "hdfs", location: "results.dat"},
 map: fn($v) ($v -> transform [$.x, 1]),
 reduce: fn($x, $v)

 ($v -> aggregate into {x: $x, num: count($)})
 });

Functions

// define a function referenced by variable $myNewFn
$myNewFn = fn($a, $b) (
 $a + $b
);

// invoke $myNewFn
$myNewFn(1,2);

// result...
3

Java Functions

• Write java code using JAQL JSON APIs
• Create public eval() method(s)
• Add jar to JAQL classpath
• Register function with JAQL
• Call function like built-in JAQL functions
• JAQL uses reflection to find appropriate

method

I/O

• Flexible I/O
• Read/write from/to local file system, HDFS,

and HBASE tables
• Read/write new file formats with I/O adapters

(Java)

Conclusion

• JAQL is a JSON query language that lets
you manipulate your JSON data

• It runs on top of Hadoop, making M/R
programming even easier

• It comes with flexible extensions
mechanisms (functions, I/O)

