
Hadoop
Jörg Möllenkamp
Principal Field Technologist

Sun Microsystems

Introduction
CMT+Hadoop
Solaris+Hadoop
Sun Grid Engine+Hadoop

Agenda

Introduction

I‘m ...
Jörg Möllenkamp
better known as „c0t0d0s0.org“
Sun Employee
Principal Field Technologist
from Hamburg

I‘m ...
Jörg Möllenkamp
better known as „c0t0d0s0.org“
Sun Employee
Principal Field Technologist

thus a part of the HHOSUG as well ...

An apologize right at the start ...

No live demonstration ...

....Sorry

Had a „shortnotice“ customer meeting at 10:00 o‘clock ...

3 presos yesterday, one this morning.
so my voice may be a single point of failure ...

Or to say it with Rudi Carrell
„A moment ago in a meeting room in Bremen, now on the
stage in Berlin“

Had no time to test my „demo case“

And i‘ve learned a thing in thousand presos:
Never ever do a live demo without tests ...
... will ruin your day big time ...

In the scope of this presentation:
Why is Sun interested in Hadoop?

Mutual significance
A little bit bragging about some new Sun HW

Not in the scope of this presentation:
Explaining you the idea behind Hadoop

The History of Hadoop
Just providing a list of Sun Hardware

Sun+Hadoop

Why is Sun working with Hadoop?

At first: It‘s an „I“ technology.

Not „I“ for „Internet“

„I“ for „Interesting stuff“

At the CEC2008
Hadoop was an important

part on the Global Systems Engineering Tracl

We think that:
Hadoop can provide something to Sun

But as well:
Sun can provide something to Hadoop

Hadoop+CMT

What can Hadoop provide for Sun?

Another usecase for a special kind of hardware

CMT
Chip Multi Threading

4 or 8 Cores are for Sissys

2005
UltraSPARC T1

8 Cores
4 Threads per Core

32 Threads per System

2007
UltraSPARC T2

8 Cores
2 Integer Pipelines per Core

4 Threads per Pipeline
64 Threads per CPU

2008
UltraSPARC T2+
CMT goes SMP

8 Cores
2 integer pipelines per core

4 threads per pipeline
64 Threads per CPU
4 CPUs per system

256 threads per system

2010
UltraSPARC „Rainbow Falls“

16 Cores
2 integer pipelines per core

4 threads per pipeline
128 Threads per CPU

4 CPUs per system
512 threads per system

That would look like that:

obviously a single grep process
don‘t scale that well on this system ...

Those system eat threats ... lot‘s of them ...

Otherwise it‘s relatively slow ...
just 1.6 GHz at the moment.

But 4 memory controllers today, more later ...
because frequency means nothing if your proc has to wait

for data from RAM ...

Or perhaps a better analogy ...
It doesn‘t matter if you stir your diner at

1.6 GHz or 4.7 GHz
when you have to wait for

your significant other
to get the bottle of wine from the cellar.

To be honest ...

my colleagues made the last screenshot on this
system

We have an operating system
 that can use this amount

of threads.

But that‘s only half of the story:
You need applications that are able to generate the load.

UltraSPARC Tx is a massively parallel, throughput
centric architecture ...

Sound familiar?

Yes ... indeed!

Would you like your Hadoop in a box?

Wasn‘t Hadoop developed with small boxes in mind?

Yes ... of course.
But there is still a reason for using T-Class systems.

Density!

Yahoo*
40*1U

Blade 6000
with T2 blade

T5240 T5440+J4400

Size

Thread/Node

Disks/Node

Memory/Node

Nodes/Rack

Threads/Rack

Memory/Rack

Disks/Rack

40*1U 4*10U 20*2U 5+5x4U

8 64 128 256

4 4 16 24

8-16 GB 128 GB 256 GB 512 GB

40 40 20*2U 5

320 2560 2560 1280

320-640 GB 5120 GB 5120 GB 2560 GB

160 160 2320 120

More density? More performance?

When you want to go really extreme ...
Sun Storage Flash Array F5100

1 rack unit
1.2 million IOPS random write
1.6 million IOPS random read
12.8 GByte/s sequential read
9.6 GByte/s sequential write
1.92 TB capacity

37

Yahoo*
40*1U

Blade
6000

with T2
blad

e

T5240 T5440+J4
400 T5440+F5100 T5120+F5100

Size

Thread/
Node

Disks/
Node

Memory/
Node

Nodes/
Rack

Threads/
Rack

Memory/
Rack

Disks/
Rack

40*1U 4*10U 20*2U 5+5x4U 8*(1U +
4U)) 20*(1U+1U)

8 64 128 256 256 128

4 4 16 24 80 80

8-16
GB 128 GB 256 GB 512 GB 512 256

40 40 20 5 8 20

320 2560 2560 1280 2.048 2560

320-64
0

GB

5120
GB

5120
GB

2560
GB 4.096 5120

160 160 320 120 640 1600

But colleagues found
a problem with such large cluster

I will just use their slides now ...

Solaris+Hadoop

I‘ve already talked about
Logical Domains and Zones

There is a build-in virtualization in Solaris
It‘s called Zones.

It‘s an low/no-overhead
virtualization

a single kernel
look as several ones.

Thus you have a virtual
operating system in your OS.

Up to 8191.

... you will have no memory before reaching this number.

A Solaris Zone
... can‘t access the hardware directly

... has it‘s own root
... can‘t see the contents of other zones

... is a resource management entity

So you could use your normal server systems.

Parasitic Hadoop

It lives from the idle cycles on your systems.

Zone
with a parasitic

Hadoop

Solaris 10/Opensolaris System

A parasite has to ensure that it doesn‘t kill the host,
as it would kill the parasite as well.

Solaris has a functionality
called Solaris Resource Management

You can limit the consumption:
... of CPU cycles

... of memory consumption
... of swap space

... of network bandwith

#! /usr/bin/perl
while (1) { my $res = (3.3333 / 3.14) }

su einstein
Password:
$ /opt/bombs/cpuhog.pl &
$ /opt/bombs/cpuhog.pl &

bash -3.2$! ps!-o!pcpu ,project ,args %CPU PROJECT
COMMAND
0.0 user.einstein -sh
0.3 user.einstein bash
47.3 user.einstein /usr/bin/perl /opt/bombs/cpuhog.pl
48.0 user.einstein /usr/bin/perl /opt/bombs/cpuhog.pl
0.2 user.einstein ps -o pcpu,project,args

dispadmin -d FSS

projadd shcproject
projmod -U einstein shcproject

#!projmod!-K! "project.cpu-shares=(privileged ,150,none)" lhcproject
#!projmod!-K! "project.cpu-shares=(privileged ,50,none)" shcproject

$ newtask -p shcproject /opt/bombs/cpuhog.pl &

$!ps! -o! pcpu ,project ,args
%CPU PROJECT COMMAND
0.0 user.einstein -sh
0.3 user.einstein bash
0.2 user.einstein ps -o pcpu,project,args
95.9 shcproject /usr/bin/perl /opt/bombs/cpuhog.pl

$!newtask!-p! lhcproject! /opt/bombs/cpuhog.pl! &
[2] 784

$!ps! -o! pcpu ,project ,args
%CPU PROJECT COMMAND
0.0 user.einstein -sh
0.1 user.einstein bash
72.5 lhcproject /usr/bin/perl /opt/bombs/cpuhog.pl
25.6 shcproject /usr/bin/perl /opt/bombs/cpuhog.pl
0.2 user.einstein ps -o pcpu,project,args

Zone
with a parasitic

Hadoop

Solaris 10/Opensolaris System

1% compute power guaranteed

99% compute power guaranteed

Icing on the cake

ZFS

Forget everything you know about filesystems:
ZFS isn‘t really a filesystem ...

A POSIX compatible filesystem is just a possible view
an emulated block device is another ...

No volumes
Integrated RAID

(RAID done right - RAID5/RAID6/RAID TP without read-amplification and write-hole)

Usage-aware selective resilvering
Creating filesystem as easy as directories

Guaranteed data validity (okay 99,999999999999999999%)
Guaranteed consistent on-disk state of the filesystem

Integrated compression
Integrated Deduplication

More important for our „parasitic Hadoop“:
Quota+Reservations

Putting the HDFS in an own filesystem

Reservation:
ensuring that a filesystem has a certain minimum of free space that

can‘t be used by other filesystems

Quota:
ensuring that a filesystem can‘t get bigger than a certain size.

Sun Grid Engine+Hadoop

Great by itself on dedicated machines
Map/reduce only
Unaware of other machine load

Schedules only against data
No policies
No resource differentiation

No accounting

All things that DRMs do well

The Hadoop-on-Demand works resonably well but has a problem:
It doesn‘t know about the location of the data in the HDFS.

Grid Engine resources, aka “complexes”

Model aspects of your cluster
Concrete

Free memory
Software licenses

Abstract
High priority
Exclusive host access

Can be fixed, counted, or measured

Why not model HDFS data blocks as resources?

Scheduling Against the Data

The new integreation „measures“ where blocks are ...
... a helper software finds out which blocks you need ...

... and schedules your Hadoop accordingly on this grid nodes.

Scheduling Against the Data

The new Sun Grid Engine integration of hadoop is
data locality aware

Vielen Dank für Ihre
Aufmerksamkeit!
Jörg Möllenkamp
Principal Field Technologist

Sun Microsystems

