
Learning to Rank from Clickthrough Data

Qiuyan Xu

Abstract
This paper presents an analysis over current algorithms of learning to rank, with a fo-
cus on the input of the learning approaches. There are many algorithms of learning to
rank available. The most basic one is linear regression, which learns single documents.
RankingSVM is classic while MPRank is relative new. Both of them use pair-wise
preferences as input. RBA and Cofi-Rank, however, learn lists instead of preferences.
Almost all the learning approaches nowadays use one of the above three types of input.
Five learning to rank algorithms are briefly introduced with focus on their input data.
In order to learn to rank with those learning approaches, a large amount of training data
is required. For learning to rank algorithm evaluations some training data is labeled
by experts. However, in large scale learning, it is more practical to extract required
training dataset from logging data, i.e. the implicit feedback from users which mainly
contains the information that on which documents a user has clicked. Considering the
importance of the training data, we will especially concentrate on, what kind of input
is required and how to obtain such an input using implicit or explicit feedback, with
respect to popular learning approaches.

1 Motivation
Nowadays it is a trend that machine learning approaches are used in learning to rank.
Compared with conventional ranking approaches such as TF-IDF [22] and PageR-
ank [2], machine learning approaches show the advantage that people do not need to
assign the parameters of the models. Instead, optimal parameters can be found out dur-
ing the learning process, which is far more intelligent and make it possible to build a
complex model.

However, the introduction of machine learning gives rise to a new problem that a
large amount of training data is required to support the learning process. It is a crucial
problem, how to obtain the training data. In some experiment, e.g. [20], some experts

1



labeled an amount of documents and the labeled documents were later formed into a
dataset, which fits the designed approach. Unfortunately, it is not practical to label a
large quantity of data manually, because it is too expensive and the data is still rare. To
solve such a problem, some rules are introduced in [20], with which pair-wise prefer-
ences can be extracted from the users’ clickthrough data that exists in the logging data
of a search engine. In comparison with other source of training data such as those gen-
erated from the experts, logging data has the advantage that it is free available and exists
in a large amount. Furthermore, as the search engine wins new logging data every day,
the logging data is always up-to-date.

Considering the advantage of clickthrough data, in this paper, we will concentrate on
how to construct appropriate input for popular learning to rank approaches. Moreover,
some typical approaches will be introduced, which take advantage of clickthrough data
to learn to rank.

2 Logging
A logging server can collect a lot of logging data every day, which mainly includes
the users, the queries, the displayed results and the clicks of the users. Intuitively we
may conclude that clicked results are relevant to the query, since the users don’t click
at random [12]. Instead, they tend to click those results which can meet their informa-
tion requirement. As clickthrough date reflects the quality of the results, logging data
is regarded as the most important source of implicit feedback, which may be used to
optimize as well as personalize the rankings.

2.1 Logging Server
In order to acquire the logging data, a logging server can be established to log the user
behavior. In [12] Joachims introduced an easy way to set up a proxy server for logging.
A unique id will be assigned to each query. The links of the documents presented to the
users lead to the proxy server rather than directly to the target. Useful information such
as query id, target link will be encoded in the link. Once the server received a request, it
stores the information into the database and redirect to the target site, so that the whole
process remain transparent to the users.

Moreover, Joachims also suggested how to present the data in the database. The
clickthrough data can be regarded as triplets (q, r, c), where q is the query, r is the
ranking for the query and c is a set of clicked results.

2



2.2 From Feedback to Dataset
Both explicit and implicit feedback reflect the relevance of the documents. In order
to apply them into learning approaches, they need to be organized in a form that fits
a specific approach for learning to rank. Typically there are three types of input, i.e.
point-wise, pair-wise and list-wise.

2.2.1 Ratings

When we use rating to determine if a document is relevant to a given query, it is called
point-wise. Each document corresponds a point with an assigned score. Each document
is regarded independent and there exists no correlation among documents. In [18],
information retrieval was regarded as a binary classification problem that a document
is either relevant or irrelevant to a given query. However, in the reality, there is barely
absolute relevance or irrelevance. It is more common that some document is reasonably
relevant or somewhat relevant to a query. So it is hard to classify documents into only
two classes.

Since binary classification cannot comprehensively cover all the situations, it is rea-
sonable to use multi-level score to rate the documents. For instance documents can be
classified into highly relevant, partially relevant, definitively irrelevant and so on [24].

Ratings for documents can be won from both explicit and implicit feedback. Some
commercial websites collect explicit feedback from users in such a way that they let
users click stars to score a result, e.g. YouTube and Amazon. Fig 1 shows how YouTube
collects ratings from users. In the video page there are five stars under the video, on
which users may click to score. As shown in the example, when the mouse stays on
four stars, that means the video is “pretty cool”.

Figure 1: User may click the stars to give an explicit feedback.

Although explicit feedback works well, it is not easy to collect it. Usually speaking,
users are not willing to give explicit feedback. It is more practical, if we can learn
implicit feedback. For example, binary score can also be learnt from users’ click in
such a way that clicked results are assigned as relevant while non-clicked results are
assigned as irrelevant. However it has also its disadvantages. The assumption that non-
clicked results are irrelevant is not so convincing, since such results with a low ranking
seem to never be seen by the users. As a result, they have no chance to be clicked at all,
no matter how relevant they are. Furthermore, as the amount of non-clicked results is
much more than clicked ones, in other words, there are much more irrelevant documents

3



than relevant ones in the training data, which may cause that the error is small even when
a function always returns false [24].

2.2.2 Preferences

Although ratings are easy to apply, it is regarded unresonable to treat the relevance
learnt from clickthrough data in a whole range [20], as clickthrough data has nothing to
do with those results that the user has never seen. In [20] some rules were introduced,
with which pair-wise preferences can be extracted from clickthrough data.

Before we introduce the rules, it is necessary to define the concept of query chains.
When searching with a search engine, it is quite common that the users reformulate their
query key words. Those queries with a same purpose build a query chain. The idea is
that all queries in a query chain share the same information requirement. With query
chains, more queries can be associated together and thus more preferences can be learnt.

Figure 2: Clickthrough Rules [20]

Fig. 2 shows six clickthrough rules from [20]. The first one presents that a clicked
result is better than the skipped results that have a higher position but are not clicked.
An eye tracking study [10] has proved that the users usually read the results from above
and one after another, and the users always click a result after they read it. It is also

4



understandable that they tend to click those results that are relevant to the query. In
conclusion, when a user clicks a result, he has read all the results shown above and
finally he decides to click a more relevant one. The second rule shows that when a user
click the first result of a page without clicking the second one, a first result is then better
than the second one, since the users read at least first two results of a page, according to
the eye tracking study.

The third and fourth rules are in principle identical with the first two ones, except
that they are applied in a query chain. When a query is in a query chain, the preferences
can be also applied to the previous query.

The last two rules take use of the concept of query chains intensively. The fifth
rule states that when a query is in a query chain, a clicked result is also better than the
skipped results in the page of the previous query. Here the skipped results were defined
a little different that the result shown one position below the last click is also regarded
as skipped, since the eye tracking study also showed that when a user clicks a result, he
has already read the result shown one position below. The sixth rule presents that when
a query is in a query chain and no results were clicked in the previous query, a clicked
result is better than the first two results of the previous query.

(a) Search for “lucene” and click on the second
result

(b) Search refined to “lucene index browser” and
click on the first result

Figure 3: An example illustrating clickthrough behaviour and query chains

An example is shown in Fig. 3. At first we search for “lucene” and click on the
second result, and then we refine the search to “lucene index browser” and click on the
first result. We denote the first search as S1, second as S2, Di as the i’th result, the
query “lucene” as q′ and “lucene index browser” as q. According to the first rule, we
may get the preference: S1D2 >q′ S1D1. According to the second rule, we get the
preference: S2D1 >q S2D2. Taking use of the fourth rule, the preference in S2 can
also be applied in S1, i.e. S2D1 >q′ S2D2. From the fifth rule, we may further get

5



some preferences with respect to both searches: S2D1 >q′ S1D1, S2D1 >q′ S1D3.
As shown we have won five preferences altogether from the above query chain.

2.2.3 Rankings

Ranking as a form of list is exactly what an original information retrieval problem is
like. However there is so far no available rules that extracts a list of ranking from the
logging data. So the way of extract a ranking from logging data is similar to constructing
ratings. We take the count of each document as its score, so that documents with more
clicks achieve a higher score. In this way we may get a list of documents ordered by
score which presents the ranking.

Since it’s the same way as to construct a point-wise dataset. They share the disad-
vantage that it is difficult to carry out in a personalization.

Google collects ranking data in another way. If the user has logged in, there will
show a button “promote” and a button “remove” beside each result, so that the user is
allowed to adjust the rankings themselves. And google also benefits as they win explizit
feedback on rankings.

3 Learning to Rank
Thus far there are lots of approaches for learning to rank. TF-IDF [22], for example,
takes use of a statistic over term frequency within a document and document frequency
which counts in how many documents a term appears. PageRank [2] as a very successful
approach, however, estimates the importance of each web page according to the number
of the pages that link to the page and the importance of those pages as well. Nowadays
almost all new approaches use machine learning technologies, which have the advantage
that they can adjust parameters themselves to achieve a best result.

3.1 Approach
In most cases, documents are represented as vectors. The example from [1] has ex-
plained clearly, how it works.

Suppose we have a dictionary constituted of six terms: bak(e,ing), recipes, bread,
cake, pastr(y,ies) and pie(s), note that all the words belong to a same stem share a term.
And we have five document titles listed in Fig. 4:

6



D1: How to Bake Bread Without Recipes
D2: The Classic Art of Viennese Pastry
D3: Numerical Recipes: The Art of Scientific Computing
D4: Breads, Pastries, Pies and Cakes: Quantity
Baking Recipes
D5: Pastry: A Book of Best French Recipes

Figure 4: Document Titles [1]

From the above documents we can construct a matrix:

Â =


1 1 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 1 1 1 1 1
0 1 0 0 1 0

 (1)

where each row is a vector corresponds to a document and each column corresponds to
a term. The numbers in the matrix present how often a term appears in the document.
After that, we usually normalize each row, so that each document vector has a length
of 1, thus we can avoid the bias between long documents and short ones. So the result
matrix would look like:

A =


0.5774 0.5774 0.5774 0 0 0

0 0 0 0 1.0000 0
0 1.0000 0 0 0 0

0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
0 0.7071 0 0 0.7071 0

 (2)

In web scale problems, a great amount of terms results that the dimension of the
vector can be very large, which may consume memory and slow the learning process.
As all the ranking problem are related to a particular query, we usually map such a large
vector into smaller ones, in which, for example, only terms relevant to the query, or in
the simplest situation, only such terms that also appear in the query are selected for the
learning process. For instance, if the query is “bread recipe”, in the above example, we
may get a mapped matrix as:

A′ =


0.5774 0.5774
0 0
1.0000 0
0.4082 0.4082
0.7071 0

 (3)

7



In case of TF-IDF, we get the final score by:

S = A′w (4)

where w is a column vector which contains the weighting factor of each document in
A′, according to the IDF function.

As stated above, in traditional information retrieval, documents are presented with
term vectors in the vector space model. In case of machine learning, vectors are feature
vectors with static features, i.e. metadata, or query dependent features, such as term
frequency and so on.

3.2 Datasets
In employing machine learning technologies in learning to rank, a large dataset is re-
quired for the learning approaches to learn with.

3.2.1 LETOR

LETOR [16] is a benchmark dataset distributed to the search community. In the up to
date version LETOR4.0, it makes use of the Gov2 web page collection and two query
sets from TREC 2007 and TREC 2008. It extracts not only such conventional feature
data as term frequency, inverse document frequency, but also recently proposed features
such as HostRank, feature propagation, topical PageRank and so on. Those features
with queries and relevance judgment constitute LETOR dataset.

The purpose of LETOR is to provide a benchmark for learning to rank. With such a
preprocessed dataset, new approaches benefit as they can directly be evaluated. More-
over, it can be used to measure the performance of a new developed learning approach
as well as compare two approaches. As both approaches learn a same dataset, the com-
parison is relative fair.

4 Measure
In information retrieval, there are some common standards for evaluation, such as
MAP(Mean Average Precision), NDCG(Normalized Discounted Cumulative Gain),
MRR(Mean Reciprocal Rank), WTA(Winners Take All) and so on.

4.1 MAP
MAP is the most standard measure among the TREC community currently [17], which
is based on binary judgement of documents. The calculation can be described in the
following three steps:

8



For a specific query, the precision at position n is calculated as:

P@n =
#{relevant documents in top n results}

n
(5)

For each query, the average precision is defined as:

AP =

∑
n

P@n · I{document n is relevant}

#{relevant documents}
(6)

where I is 1 if the n’th document is relevant and is 0 otherwise.
MAP is the mean value over all queries in the test set:

MAP =

∑
q∈queries

APq

#{queries}
(7)

4.2 NDCG
NDCG [13] is designed for non-binary notions of relevance. It assumes that highly rel-
evant documents are more valuable than marginally relevant documents and the greater
the ranked position of a relevant document, the less valuable it is for the user.

Let G[i] be the score of document i, the cumulated gain is defined recursively as:

CG[i] =

{
G[1], if i = 1
CG[i− 1] +G[i], otherwise (8)

The discounted cumulated gain is then:

DCG[i] =

{
CG[i], if i < b
DCG[i− 1] +G[i]/ logb i, if i ≥ b

(9)

where b is the base of the algorithm.
DCG can be normalized by dividing them by the corresponding ideal DCG. IDCG

is basically calculated the same way as DCG, expect that the scores are resorted mono-
tonically decreasing. So normalized DCG is given as:

NDCG[i] =
DCG[i]

IDCG[i]
(10)

4.3 Abandonment
Abandonment is the situation that a user does not click any result in a page [21]. It is
also an important measure of user satisfaction since it indicates that users were presented
with results of no potential interest. To decrease the abandonment rate, it is required that
the results contain at least one useful result for a random user.

9



5 Learning to Rank Approaches
In the past decade a lot of machine learning approaches for learning to rank have been
studied and presented, which learn to rank with different kinds of input. In the following
we will introduce some of them.

5.1 Point-wise
In information retrieval, point-wise input is usually in such a form that each document
corresponds to an independent point. For instance, we may assign each document a
binary value, either relevant or irrelevant to a given query. Another possibility is that
for a certain query, the documents are given a score which presents how relevant the
document is. Typical learning methods which use point as input are linear regression,
Discriminative model for IR [18], McRank [15].

5.1.1 Linear Regression

We assume that the relevance between a document and a given query has an approxi-
mately linear relation with some properties of the documents, e.g. term frequency. So
for each document, the score can be presented as a linear function of the term frequen-
cies like:

y = β0 + β1x1 + β2x2 + · · ·+ βnxp + ε (11)

In the above function, y is the score, xi is the frequency of a certain term, ε contains
all the random factors which are not observed and βi is the parameter to estimate. For
a dataset with a great deal of documents and known score, the linear relation can be
formed with matrices:

Y = Xβ + ε (12)

where

Y =
(
y1 y2 · · · yn

)T (13)

X =


1 x11 . . . x1p

1 x21 . . . x2p
...

... . . . ...
1 xn1 . . . xnp

 (14)

β =
(
β0 β1 · · · βn

)T (15)

10



Each row of X begins with 1 and is followed with the vector of a document, as was
introduced. As a result, we got the estimation:

β̂ = (XTX)−1XTY (16)

in which we get a minimal sum of squared residuals, in another word, a best linear
fitting is found so that the error is minimized. In a 2-dimension view, the result can be
described like showed in Fig. 5.

Figure 5: Linear Regression [14]

5.2 Pair-wise
Currently most learning methods learn pair-wise input. Typical examples are Rank-
ingSVM [12], MPRank [6], FRank [24], LDM [9], RankBoost [8], RankNet [3],
GBRank [30], QBRank [31] and so on.

5.2.1 RankingSVM

Before we learn RankingSVM, it would be helpful to take a look at SVM at first.
Naive SVM solves a classification problem in such a way that it tries to find out a

hyperplane which separates the two given classes (di = +1 and di = −1) of points with
a maximal margin, as is showed in Fig. 6. All the given points satisfy the constraints:

wT
0 xi + b0 ≥ 1 for di = +1

wT
0 xi + b0 ≤ −1 for di = −1

(17)

The margin is then

ρ =
2

||w0||
(18)

To maximize the margin, we only need to minimize ||w0||
2

.

11



Figure 6: SVM [11]

An extension of SVM is called soft margin, in which mislabels are allowed. Slack
variables are ξi introduced to measure the degree of misclassification. The hyperplane
is then in a form like:

di(w
Txi + b) ≥ 1− ξi (19)

The problem is now to minimize the following function:

V (w, ξ) =
1

2
wTw + C

i=1∑
N

ξi (20)

RankingSVM [12] inherits the method of SVM with the difference that we try to
minimize the misorder instead of misclassification. Given a query q and two document
di, dj , the ranking function satisfies:

di >q dj ⇔ wΦ(q, di) > wΦ(q, dj) (21)

where Φ(q, d) presents the match between the query q and the document d.

5.2.2 MPRank

Magnitude-Preserving Ranking(MPRank) [6] learns from pairwise preferences and it
employs the magnitude of the relevance as well.

12



Four cost functions are introduced in [6]. The first is called hinge rank loss, which
defined as:

cnHR(h, x, x′) =

{
0, if (h(x′)− h(x))(yx′ − yx) ≥ 0
|(h(x′)− h(x))|n, otherwise (22)

where h is a hypothesis, x and x′ are documents, n is either 1 or 2. It penalizes misrank-
ing without taking the magnitude of the preference into account. Another cost function
is defined as:

cnMP (h, x, x′) = |(h(x′)− h(x))− (yx′ − yx)|n (23)

where any difference between true magnitude of preferences and predicted ones will
cause penalty. A one-side version of cMP is:

cnHMP (h, x, x′) =

{
0, if (h(x′)− h(x))(yx′ − yx) ≥ 0
|(h(x′)− h(x))− (yx′ − yx)|n, otherwise

(24)
where cost is only counted in case of misordering. The last cost function is:

cnSV R(h, x, x′) =

{
0, if (h(x′)− h(x))(yx′ − yx) ≤ ε
||(h(x′)− h(x))− (yx′ − yx)| − ε|n , otherwise

(25)
which tolerates small errors.

The MPRank algorithm minimizes the following function:

F (h, S) = ||h||2K + C
1

m2

m∑
i=1

m∑
j=1

c(h, xi, xj) (26)

When defining h(x) = w ·Φ(x) and using cMP as cost function, the above objective
function can be represented as:

F (h, s) = ||w||2 + C
1

m2

m∑
i=1

m∑
j=1

[(w · Φ(xj)− w · Φ(xi))− (yj − yi)]2 (27)

5.3 List-wise
Besides point-wise inputs und pair-wise ones, list-wise input can also be applied to a
machine learning approach. Typical examples of list-wise approaches are RBA [21],
Cofi-Rank [25], ListNet [5], LambdaRank [4], AdaRank [27], SVM-MAP [29], Soft-
Rank [23], GPRank [28], CCA [7], RankCosine [19], ListMLE [26] and so on.

13



5.3.1 RBA

Unlike other approaches, RBA(Ranked Bandits Algorithm) [21] tries to minimize the
abandonment rate. Since the interest of a user differs from that of another, the relevant
set of document for a given queries is also different for different users. The basic idea
of RBA is trying to find out the diverse rankings so that for a random user there exists
at least one result that satisfies him.

Figure 7: REC [21]

Fig. 7 shows the pseudo code of REC(Randed Explore and Commit). It is a greedy
strategy that from the first rank on, the rank is assigned the document which achieves
the most clicks.

RBA, whose algorithm is shown in Fig. 8, has optimized REC in that it is able
to adapt itself to the changing mind of users. Each rank i runs an MAB(Multi-armed
bandit) instance MABi and is initialized according to the selected MABi. In case that
the document selected is duplicated to that of another rank, the rank will be assigned
an arbitrary document. In each iteration with the learning process, the rankings are
presented to a user and the user clicks one or none document. Then each rank is updated,
no matter it is clicked or not, with the designed algorithm of its MAB.

5.3.2 Cofi-Rank

Cofi-Rank [25] solves the recommendation problem of web shops. It gives a list of
recommendation for each user, but can also be applied to general ranking problems.
There are three steps to construct the ranking model:

14



Figure 8: RBA [21]

First, NDCG(π, y), which was introduced in section 4.2, is used as a measure of the
ranking. It is converted into:

∆(π, y) := 1− NDCG(π, y) (28)

where π is the ranking and y is the rating. As the value of NDCG is greater if the ranking
is more accurate, and it achieves 1 in optimal situation, ∆(π, y) is therefore nonnegative
and achieves 0 when the ranking is sorted as ideal and our goal is to minimize ∆(π, y).

The second step is to map the ranking into a linear function:

ψ(π, f) :=< c, fπ > (29)

where π is the ranking, f is the function to estimate rating, c is a decreasing nonnegative
sequence and fπ the the estimated rating of ranking π. As the Polya-Littlewood-Hardy
inequality states: for any two vectors a, b ∈ Rn, their inner product is maximized when
a and b are sorted in the same order. Applying the inequality, ψ is maximized by ranking
π ideally.

As the third step we define the upper bound of loss:

15



l(f, y) := max
π

[∆(π, y)+ < c, fπ − f >] (30)

which satisfies:

l(f, y) ≥ ∆(π∗, y)+ < c, fπ∗ − f >≥ ∆(π∗, y) (31)

where π∗ is the ideal ranking, i.e. the ranking induced by function f . Thus, we get the
loss function over all the queries as:

L(F, Y ) :=
u∑
i=1

l(F i, Y i) (32)

6 Conclusions
The paper introduced the currently popular machine learning approaches for learning to
rank and analyzed the way to construct a suitable training dataset for each type of learn-
ing to rank approaches. Basically point-wise, pair-wise and list-wise training dataset
are all available from the logging data. Unfortunately, for a given approaches, a certain
type of input is required and other types of input are just not fit. As a result, we must
determine an approach in advance, which is not so flexible. Due to the introduction
of clickthrough data, pair-wise training dataset can more accurately and flexibly be ex-
tracted. A number of newly introduced learning to rank approaches require not only
the preferences or rankings, but also the magnitude of the relevance to learn the rank.
Although they can reach good accuracy, it remain to solve that how the magnitude of
the relevance can be won from the implicit feedback, which can be expected as the work
in the future.

References
[1] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector spaces, and information

retrieval. SIAM Rev., 41(2):335–362, 1999.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hul-
lender. Learning to rank using gradient descent. In ICML ’05: Proceedings of the
22nd international conference on Machine learning, pages 89–96, New York, NY,
USA, 2005. ACM.

16



[4] C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost
functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 193–200. MIT Press, Cambridge, MA,
2007.

[5] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise
approach to listwise approach. In ICML ’07: Proceedings of the 24th international
conference on Machine learning, pages 129–136, New York, NY, USA, 2007.
ACM.

[6] C. Cortes, M. Mohri, and A. Rastogi. Magnitude-preserving ranking algorithms. In
ICML ’07: Proceedings of the 24th international conference on Machine learning,
pages 169–176, New York, NY, USA, 2007. ACM.

[7] H. M. de Almeida, M. A. Gonçalves, M. Cristo, and P. Calado. A combined
component approach for finding collection-adapted ranking functions based on
genetic programming. In SIGIR ’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 399–406, New York, NY, USA, 2007. ACM.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. J. Mach. Learn. Res., 4:933–969, 2003.

[9] J. Gao, H. Qi, X. Xia, and J.-Y. Nie. Linear discriminant model for information
retrieval. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 290–297,
New York, NY, USA, 2005. ACM.

[10] L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in
www search. In SIGIR ’04: Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
478–479, New York, NY, USA, 2004. ACM.

[11] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1999.

[12] T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142, New York, NY, USA, 2002. ACM.

[13] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst., 20(4):422–446, 2002.

17



[14] M. H. Kutner, C. J. Nachtsheim, and J. Neter. Applied Linear Regression Models.
McGraw-Hill/Irwin, fourth international edition, September 2004.

[15] P. Li, C. J. C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple
classification and gradient boosting. In J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, editors, NIPS. MIT Press, 2007.

[16] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for re-
search on learning to rank for information retrieval. In LR4IR 2007, in conjunction
with SIGIR 2007, 2007.

[17] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008.

[18] R. Nallapati. Discriminative models for information retrieval. In SIGIR ’04: Pro-
ceedings of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 64–71, New York, NY, USA, 2004.
ACM.

[19] T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y. Liu, and H. Li. Query-level
loss functions for information retrieval. Inf. Process. Manage., 44(2):838–855,
2008.

[20] F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feed-
back. In KDD ’05: Proceedings of the eleventh ACM SIGKDD international con-
ference on Knowledge discovery in data mining, pages 239–248, New York, NY,
USA, 2005. ACM.

[21] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-
armed bandits. In ICML ’08: Proceedings of the 25th international conference on
Machine learning, pages 784–791, New York, NY, USA, 2008. ACM.

[22] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, 1975.

[23] M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-
smooth rank metrics. In WSDM ’08: Proceedings of the international conference
on Web search and web data mining, pages 77–86, New York, NY, USA, 2008.
ACM.

[24] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. Frank: a ranking method
with fidelity loss. In SIGIR ’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 383–390, New York, NY, USA, 2007. ACM.

18



[25] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofi rank - maximum margin
matrix factorization for collaborative ranking. In Advances in Neural Information
Processing Systems 20, pages 1600, 1593. MIT Press, 2007.

[26] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to
rank: theory and algorithm. In ICML ’08: Proceedings of the 25th international
conference on Machine learning, pages 1192–1199, New York, NY, USA, 2008.
ACM.

[27] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In
SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 391–398, New York,
NY, USA, 2007. ACM.

[28] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information
retrieval using genetic programming. In T. Joachims, H. Li, T.-Y. Liu, and C. Zhai,
editors, SIGIR 2007 workshop: Learning to Rank for Information Retrieval, 27 jul
2007.

[29] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for
optimizing average precision. In SIGIR ’07: Proceedings of the 30th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 271–278, New York, NY, USA, 2007. ACM.

[30] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework for learning rank-
ing functions using relative relevance judgments. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 287–294, New York, NY, USA, 2007. ACM.

[31] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boost-
ing method and its application to learning ranking functions for web search. In
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Infor-
mation Processing Systems 20, pages 1697–1704. MIT Press, Cambridge, MA,
2008.

19


	 Abstract
	1 Motivation
	2 Logging
	2.1 Logging Server
	2.2 From Feedback to Dataset
	2.2.1 Ratings
	2.2.2 Preferences
	2.2.3 Rankings


	3 Learning to Rank
	3.1 Approach
	3.2 Datasets
	3.2.1 LETOR


	4 Measure
	4.1 MAP
	4.2 NDCG
	4.3 Abandonment

	5 Learning to Rank Approaches
	5.1 Point-wise
	5.1.1 Linear Regression

	5.2 Pair-wise
	5.2.1 RankingSVM
	5.2.2 MPRank

	5.3 List-wise
	5.3.1 RBA
	5.3.2 Cofi-Rank


	6 Conclusions
	 References

