
07.10.2010 DIMA – TU Berlin 1

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

An Introduction to
Hidden Markov Models

Max Heimel

07.10.2010 DIMA – TU Berlin 2

Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
□ What is a Hidden Markov Model?

■ Algorithms, Algorithms, Algorithms
□ What are the main problems for HMMs?

□ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
□ A short overview

■ Outlook
□ Hidden Markov Models and Map Reduce

□ Take-Home Messages

07.10.2010 DIMA – TU Berlin 3

■ Pattern recognition: finding structure in sequences.

Motivation

07.10.2010 DIMA – TU Berlin 4

■ Demonstrate, how sequences can be modeled
□ Using so-called Markov chains.

■ Present the statistical tool of Hidden Markov Models
□ A tool to find underlying processes to a given sequence.

■ Give an understanding of the main problems associated with Hidden
Markov Models
□ And the corresponding applications.

■ Present the Apache Mahout implementation of Hidden Markov Models

■ Give an outlook on implementing Hidden Markov Models for Map/Reduce

Goals of this talk

07.10.2010 DIMA – TU Berlin 5

Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
□ What is a Hidden Markov Model?

■ Applications for Hidden Markov Models
□ What are the main problems for HMMs?

□ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
□ A short overview

■ Outlook
□ Hidden Markov Models and Map Reduce

□ Take-Home Messages

Contains Math

07.10.2010 DIMA – TU Berlin 6

■ Markov Chains model sequential processes.

■ Consider a discrete random variable q with states .

■ State of q changes randomly in discrete time steps.

■ Transition probability depends only on the k previous states.
□ Markov Property

Markov Chains I

hi

q1

hj

q2

hk

qq3

…

Random
transition

Probability depends only
on the prior states

time

Markov Chain

07.10.2010 DIMA – TU Berlin 7

■ Most simplest Markov chain:
□ Transition Probability depends only on the previous state (i.e. k=1):

□ Transition Probability is time invariant:

■ In this case, the Markov chain is defined by:
□ An Matrix T containing state change probabilities:

□ An n-dimensional vector containing initial state probabilities:

□ Since and K contain probabilities, they have to be normalized:

Markov Chains II

07.10.2010 DIMA – TU Berlin 8

■ Markov Chains are used to model sequences of states.

■ Consider the weather:
□ Each day can either be rainy or sunny.

□ If a day is rainy, there is a 60% chance the next day will also be rainy.

□ If a day is sunny, there is a 80% chance the next day will also be sunny.

□ We can now model the weather as a Markov Chain:

■ Examples for the use of Markov chains are:
□ Google Page Rank

□ Random Number Generation, Random Text Generation

□ Queuing Theory

□ Modeling DNA sequences

□ Physical processes from Thermodynamics & statistical Mechanics

Markov Chains III

07.10.2010 DIMA – TU Berlin 9

■ Now consider a „hidden“ Markov chain
□ We can not directly observe the states of the hidden Markov chain.

□ However: we can observe effects of the „hidden states“.

■ Hidden Markov Models (HMMs) are used to model such a situation:
□ Consider a Markov chain and a random – not necessarily discrete - variable p.

□ The state of p is chosen randomly, based only on the current state of q.

Hidden Markov Models I

hi

q1

hj

q2

hk

q3

…

p1 p3p2

hidden variable q

observed variable p

07.10.2010 DIMA – TU Berlin 10

■ The “simplest” HMM has a discrete observable variable p
□ The states of q are take from the set

■ In this case, the HMM is defined by the following parameters:
□ The matrix T and vector of the underlying Markov Chain.

□ An matrix O containing output probabilities:

□ Again, O needs to be normalized:

■ Consider a prisoner in solitary confinement:
□ The prisoner cannot directly observe the weather.

□ However: he can observe the condition of the boots of the prison guards.

Hidden Markov Models II

rainy sunny

dirty boots clean boots

0,6 0,8

0,4

0,2
0,80,20,10,9

07.10.2010 DIMA – TU Berlin 11

Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
□ What is a Hidden Markov Model?

■ Applications for Hidden Markov Models
□ What are the main problems for HMMs?

□ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
□ A short overview

■ Outlook
□ Hidden Markov Models and Map Reduce

□ Take-Home Messages

07.10.2010 DIMA – TU Berlin 12

Problems for Hidden Markov Models

Problem Given Wanted

Evaluation Model,
Observed Sequence

Likelihood the model produced the
observed sequence

Decoding Model,
Observed Sequence

Most likely hidden sequence

Learning (unsupervised) Observed Sequence Most likely model that produced the
observed sequence

Learning (supervised) Observed- & Hidden
sequence

Most likely model that produced the
observed & hidden sequence.

Hidden sequence

Observed sequence

Model

07.10.2010 DIMA – TU Berlin 13

■ Compute the likelihood that a given model M produced a given
observation sequence O.

■ The likelihood can be efficiently calculated using dynamic programming:
□ Forward algorithm:

 Reproduce the observation through the HMM, computing:

□ Backward algorithm:

 Backtrace the observation through the HMM, computing:

■ Typical application:
□ Selecting the most likely out of several competing models.

□ Customer behavior modeling: select the most likely customer profile

□ Physics: select the most likely thermodynamics process

Evaluation

07.10.2010 DIMA – TU Berlin 14

■ Compute the most likely sequence of hidden states for a given model M
and a given observation sequence O.

■ The most likely hidden path can be computed efficiently using the Viterbi-
algorithm
□ The Viterbi algorithm is based on the Forward Algorithm.

□ It traces the most likely hidden states while reproducing the output sequence.

■ Typical Applications:
□ POS tagging (observed: sentence, hidden: part-of-speech tags)

□ Speech recognition (observed: frequencies, hidden: phonemes)

□ Handwritten letter recognition (observed: pen patterns, hidden: letters)

□ Genome Analysis (observed: genome sequence, hidden: “structures”)

Decoding

07.10.2010 DIMA – TU Berlin 15

1. Supervised Learning
□ Given an observation sequence O and the corresponding hidden sequence H, compute

the most likely model M that produces those sequences:

□ Solved using “instance counting”

 Count the hidden state transitions and output state emissions.

 Use the relative frequencies as estimate for transition probabilities of M.

2. Unsupervised Learning
□ Given an observation sequence O, compute the most likely model M that produces this

sequence:

□ Solved using the Baum-Welch algorithm

 Rather expensive iterative algorithm, but produces guaranteed EM result.

 Requires a Forward step and a Backward Step through the model per iteration.

□ Alternative: Viterbi training

 Not as expensive as Baum-Welch, but does not guarantee EM result

 Requires only a Forward step through the model per iteration.

Learning

07.10.2010 DIMA – TU Berlin 16

Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
□ What is a Hidden Markov Model?

■ Applications for Hidden Markov Models
□ What are the main problems for HMMs?

□ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
□ A short overview

■ Outlook
□ Hidden Markov Models and Map Reduce

□ Take-Home Messages

07.10.2010 DIMA – TU Berlin 17

■ Apache Mahout will contain an implementation of Hidden Markov Models
in its upcoming 0.4 release.
□ The implementation is currently sequential (i.e. not Map/Reduce enabled).

□ The implementation covers Hidden Markov models with discrete output states.

■ The overall implementation structure is given by three main and two
helper classes:
□ HmmModel

 Container for HMM parameters

□ HmmTrainer

 Methods to train a HmmModel from given observations

□ HmmEvaluator

 Methods to analyze (evaluate / decode) a given HmmModel

□ HmmUtils

 Helper methods, e.g. to validate and normalize a HmmModel

□ HmmAlgorithms

 Helper methods containing implementations of Forward, Backward and Viterbi algorithm.

Hidden Markov Models for Apache Mahout

07.10.2010 DIMA – TU Berlin 18

■ HmmModel is the main class for defining a Hidden Markov Model.
□ It contains the transition matrix K, emission matrix O and initial probability vector π.

■ Construction from given Mahout matrices K, O and Mahout vector pi:
□ HmmModel model = new HmmModel(K, O, pi);

■ Construction of a random model with n hidden and m observable states:
□ HmmModel model = new HmmModel(n, m);

■ Offers serialization and deserialzation from/to JSON:
□ HmmModel model = HmmModel.fromJson(String json);

□ String json = model.toJson();

HmmModel

07.10.2010 DIMA – TU Berlin 19

■ Offers a collection of learning algorithms.

■ Supervised learning from hidden and observed state sequences:
□ HmmModel trainSupervised(int hiddenStates,

int observedStates, int[] hiddenSequence,

int[] observedSequence, double pseudoCount);

■ Unsupervised learning using the Viterbi algorithm:
□ HmmModel trainViterbi(HmmModel initialModel,

int[] observedSequence, double pseudoCount, double epsilon,

int maxIterations, boolean scaled);

■ Unsupervised learning using the Baum-Welch algorithm:
□ HmmModel trainBaumWelch(HmmModel initialModel,

int[] observedSequence, double epsilon,

int maxIterations, boolean scaled);

HmmTrainer

Used to avoid zero probabilities

Use log-scaled implementation –
slower but numerically more stable

Use log-scaled implementation –
slower but numerically more stable

07.10.2010 DIMA – TU Berlin 20

■ Offers algorithms to evaluate an HmmModel

■ Generating a sequence of output states from the given model:
□ int[] predict(HmmModel model, int steps);

■ Computing the model likelihood for a given observation:
□ double modelLikelihood(HmmModel model, int[] observations,

boolean scaled);

■ Compute most likely hidden path for given model and observation:
□ int[] decode(HmmModel model, int[] observations,

boolean scaled);

HMMEvaluator

Use log-scaled implementation –
slower but numerically more stable

Use log-scaled implementation –
slower but numerically more stable

07.10.2010 DIMA – TU Berlin 21

Agenda

■ Motivation

■ An Introduction to Hidden Markov Models
□ What is a Hidden Markov Model?

■ Applications for Hidden Markov Models
□ What are the main problems for HMMs?

□ What are the algorithms to solve them?

■ Hidden Markov Models for Apache Mahout
□ A short overview

■ Outlook
□ Hidden Markov Models and Map Reduce

□ Take-Home Messages

07.10.2010 DIMA – TU Berlin 22

■ How can we make HMMs Map Reduce enabled?

■ Problem:
□ All the presented algorithms are highly sequential!

□ There is no easy way of parallelizing them.

■ However:
□ Hidden Markov Models are often compact (n, m not “too large”)

□ The most typical application on a trained HMM is decoding, which can be performed
fairly efficient on a single machine.

 Trained HMMs can typically be efficiently used within Mappers/Reducers.

□ The most expensive – and data intensive – application on HMMs is training.

 Main Goal: parallelize HMM training.

□ Approaches to parallelizing learning:

 For supervised learning: trivial, only need to count state changes.

 For unsupervised learning: tricky, ongoing research :

» Merging of trained HMMs on subsequences

» Alternative representations allows training via parallelizable algorithms (e.g. SVD)

Outlook

07.10.2010 DIMA – TU Berlin 23

■ Hidden Markov Models (HMMs) are a statistical tool to model processes
that produce observations based on a hidden state sequence:

□ HMMs consist of a discrete hidden variable that randomly and sequentially changes its
state and a random observable variable.

□ Hidden state change probability depends only on the k prior hidden states

 A typical value for k is 1.

□ Probability of the observable variable depends only on current hidden state.

■ Three main problems for HMMs: evaluation, decoding and training:

□ Evaluation: Likelihood a given model generated a given observed sequence.
 Forward Algorithm

□ Decoding: Most likely hidden sequence for a given observed sequence and model.
 Viterbi Algorithm

□ Training: Most likely model that generated a given observed sequence (unsupervised) or
a given observed and hidden sequence (supervised).
 Baum-Welch Algorithm

Take-Home Messages I

07.10.2010 DIMA – TU Berlin 24

■ HMMs can be applied whenever an underlying process generates
sequential data:
□ Speech Recognition, Handwritten Letter Recognition, Part-of-speech tagging, Genome

Analysis, Customer Behavior Analysis, Context aware Search, …

■ Mahout contains a HMM implementation in its upcoming 0.4 release.

□ Three main classes: HmmModel, HmmTrainer, HmmEvaluator

□ HmmModel is a container class for representing model parameters.

□ HmmTrainer contains implementations for the learning problem.

□ HmmEvaluator contains implementations for the evaluation and decoding problem.

■ Porting HMMs to Map/Reduce is non-trivial

□ Typically, HMMs can be used within a Mapper/Reducer.

□ Most data-intensive task for HMMs: training

□ Porting HMM training to Map/Reduce is ongoing research.

Take-Home Messages II

07.10.2010 DIMA – TU Berlin 25

Thank you!

The end… my only friend, the end

