

Apache Hadoop
Large scale data processing

Speaker: Isabel Drost

Isabel Drost

Nighttime:
Came to nutch in 2004.

Co-Founder Apache Mahout.
 Organizer of Berlin Hadoop Get Together.
Daytime:

Software developer @ Berlin

Hello Information Retrieval course!

Agenda

● Motivation.

● A short tour of Map Reduce.

● Introduction to Hadoop.

● Hadoop ecosystem.

 January 8, 2008 by Pink Sherbet Photography
http://www.flickr.com/photos/pinksherbet/2177961471/

Massive data as in:

Cannot be stored on single machine.
Takes too long to process in serial.

Idea: Use multiple machines.

Challenges.

Single machines tend to fail:
Hard disk.

Power supply.
...

 January 11, 2007, skreuzer
http://www.flickr.com/photos/skreuzer/354316053/

More machines – increased
failure probability.

Requirements

● Built-in backup.
● Built-in failover.

Typical developer

● Has never dealt with
large (petabytes)
amount of data.

● Has no thorough
understanding of
parallel programming.

● Has no time to make
software production
ready.

September 10, 2007 by .sanden.
http://www.fickr.com/photos/daphid/1354523220/

September 10, 2007 by .sanden.
http://www.fickr.com/photos/daphid/1354523220/

Typical developer

● Has never dealt with
large (petabytes)
amount of data.

● Has no thorough
understanding of
parallel programming.

● Has no time to make
software production
ready.

Failure resistant: What if service X is unavailable?
Failover built in: Hardware failure does happen.

Documented logging: Understand message w/o code.
Monitoring: Which parameters indicate system's health?
Automated deployment: How long to bring up machines?

Backup: Where do backups go to, how to do restore?
Scaling: What if load or amount of data double, triple?

Many, many more.

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

Picture of developers / community

February 29, 2008 by Thomas Claveirole
http://www.fickr.com/photos/thomasclaveirole/2300932656/

 May 1, 2007 by danny angus
http://www.fickr.com/photos/killerbees/479864437/

http://www.fickr.com/photos
/jaaronfarr/3385756482/
March 25, 2009 by jaaron

http://www.fickr.com/photos/jaaronfarr/3384940437/
March 25, 2009 by jaaron

http://www.flickr.com/photos
http://www.flickr.com/photos/jaaronfarr/3384940437/

Developers world wide

Developers world wide

Open source developers

Developers world wide

Developers
interested
in large scale
applications

Open source developers

Developers world wide

Java developers

Developers
interested
in large scale
applications

Open source developers

Requirements

● Built-in backup.
● Built-in failover.

● Easy to use.
● Parallel on rails.

● Java based.

http://www.flickr.com/photos/cspowers/282944734/ by cspowers on October 29, 2006

http://www.flickr.com/photos/cspowers/282944734/
http://www.flickr.com/photos/cspowers/

Requirements

● Built-in backup.
● Built-in failover.

● Easy to administrate.
● Single system.

● Easy to use.
● Parallel on rails.

● Java based.

We need a solution that:

Is easy to use.

Scales well beyond one node.

Java based implementation.

Easy distributed programming.

Well known in industry and research.

Scales well beyond 1000 nodes.

● 2008:
– 70 hours runtime

– 300 TB shuffling

– 200 TB output

● In 2009
– 73 hours

– 490 TB shuffling

– 280 TB output

– 55%+ hardware

– 2k CPUs (40%
faster cpus)

● 2008
– 2000 nodes

– 6 PB raw disk

– 16 TB RAM

– 16k CPUs

● In 2009
– 4000 nodes

– 16 PB disk

– 64 TB RAM

– 32k CPUs (40%
faster cpus)

Example use cases

● Distributed Grep.
● Distributed Sort.
● Link-graph traversal.
● Term-Vector per host.
● Web access log stats.

● Inverted index.
● Doc clustering.
● Machine learning.
● Machine translation.

Some history.

Feb '03 first Map Reduce library @ Google

Oct '03 GFS Paper

Dec '04 Map Reduce paper

Dec '05 Doug reports that nutch uses map reduce

Feb '06 Hadoop moves out of nutch

Apr '07 Y! running Hadoop on 1000 node cluster

Jan '08 Hadoop made an Apache Top Level Project

Hadoop assumptions

Assumptions:
Data to process does not fit on one node.

Each node is commodity hardware.
Failure happens.

Ideas:
Distribute filesystem.

Built in replication.
Automatic failover in case of failure.

Assumptions:
Moving data is expensive.

Moving computation is cheap.
Distributed computation is easy.

Ideas:
Move computation to data.

Write software that is easy to distribute.

Assumptions:
Systems run on spinning hard disks.

Disk seek >> disk scan.

Ideas:

Improve support for large files.
File system API makes scanning easy.

Hadoop by example

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml | sort | uniq --count

pattern=”http://[0-9A-Za-z\-_\.]*”

grep -o "$pattern" feeds.opml

 M A P | SHUFFLE | R E D U C E

| sort | uniq --count

 M A P | SHUFFLE | R E D U C E

Local to data.

 M A P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output

 M A P | SHUFFLE | R E D U C E

Local to data.
Outputs a lot less data.
Output can cheaply move.

output

 M A P | SHUFFLE | R E D U C E
output

result

result

result

result

input

Local to data.
Outputs a lot less data.
Output can cheaply move.

Shuffle sorts input by key.
Reduces output significantly.

private IntWritable one = new IntWritable(1);
private Text hostname = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 hostname.set(getHostname(tokenizer.nextToken()));
 output.collect(hostname, one);
 }
}

public void reduce(Text key, Iterator<IntWritable>
values, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
}

Input

Map Map Map Map Map

Intermediate Output

Shuffl e
Groups by key

Intermediate Output

Output

Reduce Reduce

k1:v1, k2:v1, k1:v2 k2:v1, k1:v2 k2:v1, k1:v3

k1:v1, k1:v2, k1:v3 k2:v1, k2:v1, k2:v1

Petabyte sorting benchmark

Per node: 2 quad core Xeons @ 2.5ghz, 4 SATA disks, 8G RAM (upgraded to

16GB before petabyte sort), 1 gigabit ethernet.

Per Rack: 40 nodes, 8 gigabit ethernet uplinks.

Waste = Failed or killed, speculative execution.

What was left out

● Combiners compact map output.
● Language choice: Java vs. Dumbo vs. PIG …
● Size of input files does matter.
● Facilities for chaining jobs.
● Logging facilities.
● Monitoring.
● Job tuning (number of mappers and reducers)
● ...

Hadoop ecosystem.

Higher level languages.

Example from PIG presentation at Apache Con EU 2009

Example from PIG presentation at Apache Con EU 2009

Example from PIG presentation at Apache Con EU 2009

Example from JAQL documentation.

Example from JAQL documentation.

(Distributed) storage.

Libraries built on top.

avro generic avro specific protobuf thrift hessian java java externalizable

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

object create
serialize
deserialize
total
size

Alternative approaches.

Get involved!

Do you love:

Do you love:

 Solving hard problems?

Do you love:

 Solving hard problems?

 Communicating your solution?

 Solving hard problems?

Do you love:

 Communicating your solution?

 Working with excellent teams?

 Solving hard problems?

Do you love:

 Communicating your solution?

 Working with excellent teams?

 Picture by: July 9, 2006 by trackrecord, http://www.flickr.com/photos/trackrecord/185514449

Skills to learn:

Technical

Soft
Skills

Technical

Source control system.

Continuous integration.

Test-fi rst development.

Issue-tracker.

Soft
Skills

Create readable patches.

Communicate and discuss solutions.

Review others code.

Work in large, distributed teams.

How?

● First time users:
– Documentation in

wiki.

● Found a bug:
– Go to JIRA, file a

bug.

– Describe the bug.

– Create a test to
show.

– Provide a patch.

● Provide new features.

● Experimenting:
– Write examples.

● Evaluating:
– Test performance.

– Provide
comparison.

● Participate on-list.
– Answer questions.

– Discuss your use-
case.

Recipe to Apache

● Download the release and use it.
● Subscribe to the mailing-list.
● Questions:

– Documentation: Wiki.

– Discussions: Mailing list.

– Current status: JIRA.

– History: JIRA for patches, mailing-list for votes.

● Checkout the code and built it.

*-user@lucene.apache.org

*-dev@lucene.apache.org

Love for solving hard problems.

Interest in production ready code.

Interest in parallel systems.

Bug reports, patches, features.

Documentation, code, examples.
July 9, 2006 by trackrecord
http://www.flickr.com/photos/trackrecord/185514449

Contact Ross Gardler for more information on Apache at universities worldwide.

Why go for Apache?

Jumpstart your project with proven code.

 January 8, 2008 by dreizehn28
http://www.flickr.com/photos/1328/2176949559

Discuss ideas and problems online.

 November 16, 2005 [phil h]
http://www.flickr.com/photos/hi-phi/64055296

Become part of the community.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

